Analysis of the Quality Standards for Microsurfacing Treatments

발레리아 1·최문규1·김동혁2·이문섭3·김연태4·정진훈5*

1 학생회원 · 인하대학교 스마트시티공학과 석사과정, ² 학생회원 · 인하대학교 스마트시티공학과 박사과정 3 정회원 · 한국건설기술연구원 인프라안전연구본부 수석연구원

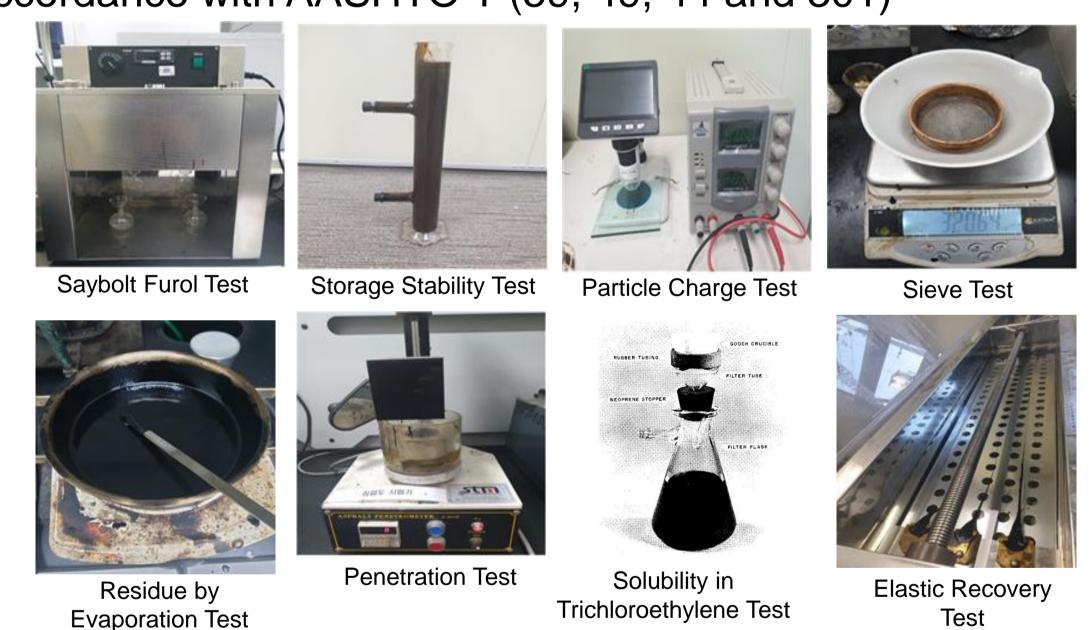
, 4 정회원 · 한국건설기술연구원 전임연구원 · 인하대학교 스마트시티공학과 박사과정

5 정회원 · 인하대학교 사회인프라공학과 교수

1. Introduction

- Internationally pavement preservation treatments are used for various reasons with the focus being on extending the pavement life at a low budget
- Generally, pavement maintenance was performed after the pavement show major deterioration
- However, that is more costly, allows the pavement to lose even more it's structural capability
- Therefore the concept of Age
 pavement maintenance was introduced because it allows the pavement to be treated before it loses its structural capability
- Among the preventive maintenance, microsurfacing is one of the most used pavement treatment around the world
- Therefore, this study evaluates materials and mixtures used for microsurfacing in South Korea as well as evaluating the in-situ surface condition before and after the placement of a microsurfacing treatment

2. Test Materials and Experiment Method

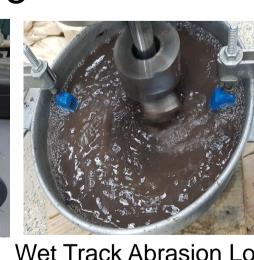

Material evaluation happened in two stages:
 Lab material: Materials received weeks before construction
 Field material: Materials received from the field

1. Aggregate

- The maximum particle size in the aggregates range from 0~5mm
- Aggregate sieve test was performed in accordance with KS F2502 by using a 500g aggregate sample

2. Asphalt Emulsion

• Emulsion properties such as saybolt furol, sieve test, storage stability, particle charge, residue by evaporation, penetration, solubility in trichloroethylene and elastic recovery were tested in accordance with AASHTO T (59, 49, 44 and 301)



3. Mixture

 ISSA and AASHTO recommend tests such wet cohesion, wet-track abrasion, wet stripping, and loaded wheel to evaluate the quality of a laboratory produced mixture

Wet Cohesion Test V ISSA TB139

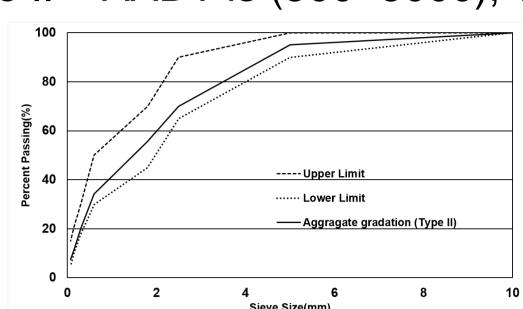
Wet Stripping Test ISSA TB 114

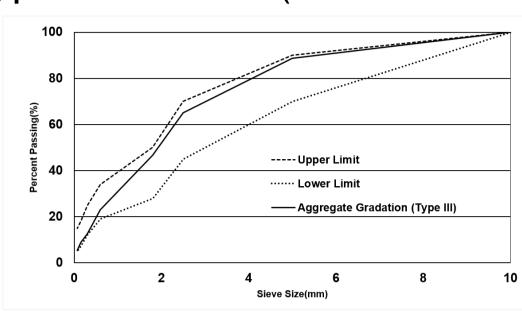
Wet Track Abrasion Loss Test ISSA TB 100

Loaded Wheel Tester ISSA 147

4. Surface Condition

 Pavement condition was evaluated considering the distresses to be addressed. Tests to access the pavement texture, the crack rates, rutting depth and the roughness were performed by a Korean agency


British Pendulum Test


PES

3. Test Results

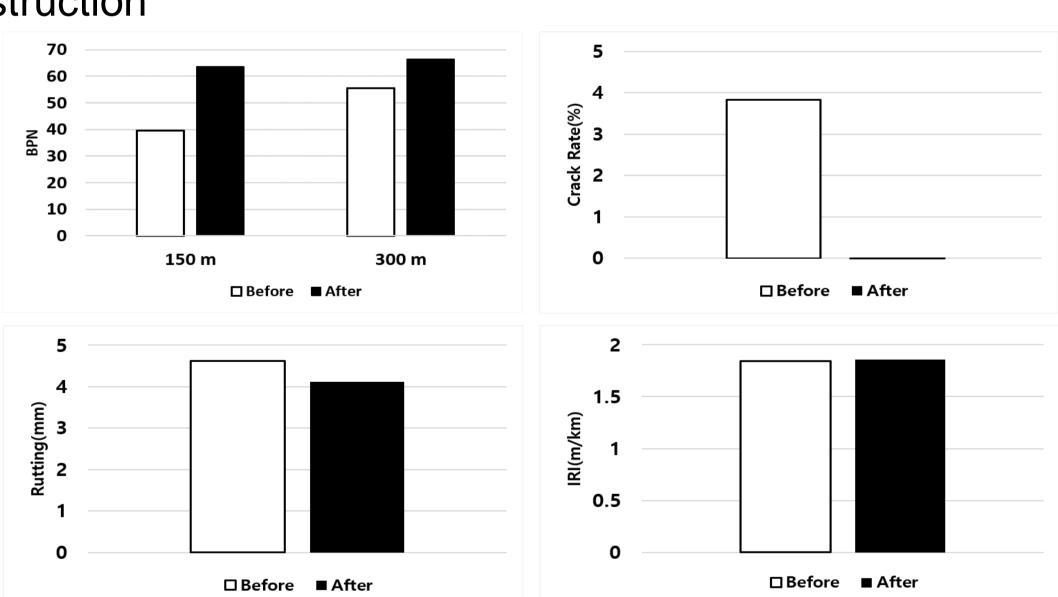
1. Aggregate

- Tested aggregates were identified as type II and type II
- Type II AADT is (500~5000), Type III AADT (more than 5000)

2. Asphalt emulsion

 Apart from the saybolt furol viscosity, all the other properties did satisfy the recommended standards specifications by ISSA

Properties	Criteria	Lab Material	Field Material
Saybolt Furol Viscosity 25°C, s	20~100	124 [NG]	134 [NG]
Sieve test, %	~0.1	0.02 [OK]	0.03 [OK]
Storage Stability 1day, %	~1	0.7 [OK]	0.6 [OK]
Particle charge	Positive	Positive [OK]	Positive [OK]
Residue by evaporation, %	62~	65 [OK]	63 [OK]
Penetration 25°C, 0.1mm	40~90	71 [OK]	68 [OK]
Solubility in trichloroethylene, %	97.5~	99.2 [OK]	98.9 [OK]
Elastic Recovery 25℃, %	40~	100~ [OK]	100~ [OK]


3. Mixture

- All tests performed using lab materials came out successful
- However, not all tests performed using field materials did satisfy the standard specifications

	Properties	Criteria	Lab Material	Field Material
Wet Cohesion, kg/cm	@30minutes	12~	18.3 [OK]	15 [OK]
	@60 minutes	20~	20.7 [OK]	20 [OK]
Wet-track Abrasion Loss @1hour, g/m²		~538	327 [OK]	231.1 [OK]
W	et-stripping, %	90~	95 [OK]	90 [OK]
Loaded Wheel	Sand Adhesion, g/m²	~538	475 [OK]	560 [NG]
	Vertical Displacement, %	~10	0 [OK]	More than 10% [NG]
	Lateral Displacement, %	~5	о [ок]	More than 5 % [NG]

4. Surface Condition

It was noticed that the surface condition was enhanced after the construction

4. Conclusion

- 1. For both lab and field materials when tested separately, some of the tested parameters did not satisfy the specified standards.
- 2. British pendulum test results increased significantly. Cracks were successfully filled, and rutting was minimized. There were no significant changes on the IRI, and its ranges are acceptable
- 3. Overall, pavement condition was enhanced, and the section will continue to be constantly maintained to achieve its maximum service life

5. Acknowledgement

This research was funded by the Korea Institute of Construction Technology's "Research on Improving Maintenance Methods by Evaluating Quality Standards Tests".

