Poster Presentation : 나노재료

2021년도 한국현미경학회 춘계학술대회

Structural analysis of an HCP-phase PdH nanoparticle using atomic electron tomography

<u>Hyesung Joa</u>, Jaeyoung Hongb, DongWon Chunb, YoungSu Leec and Yongsoo Yanga*

^aDepartment of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

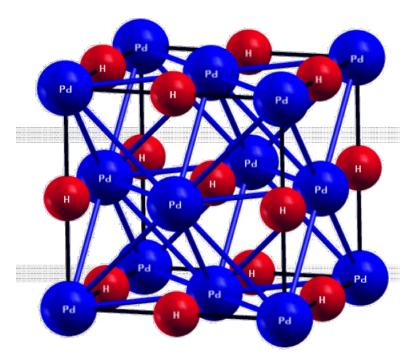
^bAdvanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

^cCenter for Energy Materials Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

발표자: Hye Sung Jo

Department of Physics, KAIST

Multi-Dimensional Atomic Imaging Lab



Palladium(Pd) nanoparticle

Intro

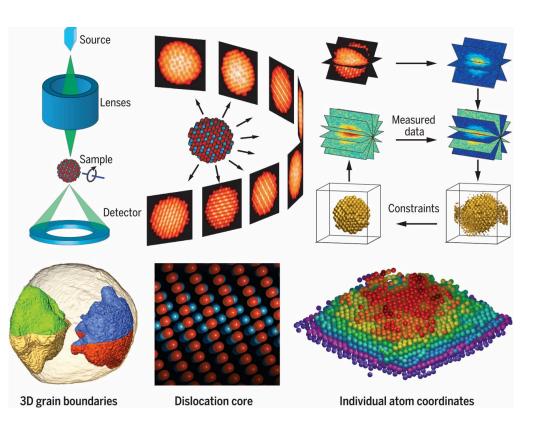
Palladium Hydride (PdH)

- Lower activation energy of H₂ dissociation than other metals.
- Spotlighted as a hydrogen storage material and catalyst.
- PdH forms FCC structure (generally, H in octahedral site).
- Palladium absorbs no more than 1 H atom per Pd atom*

Unprecedented structure of Pd nanoparticle

Intro

- New structural form of Pd nanoparticles can be synthesized in H rich graphene liquid cell by controlling electron beam illumination.
- This is presumed to be an HCP structure, not a known FCC structure, indicating the discovery of an **unprecedented new structure**.
- The atomic structure is closely related to its storage capacity, catalytic function.



Structure verifying & analysis through AET

Intro

Schematic layout and result of AET

- We don't know the exact structure information of this nanoparticles (such as internal structure, structural changes in synthesis process, and whether it is mainly single crystal)
- To understand the atomic arrangement, the most intuitive and easiest way is obtaining all 3D position of atoms in nanoparticles.
- By using atomic electron tomography(AET), the structure can be accurately identified and quantitative properties can be obtained.

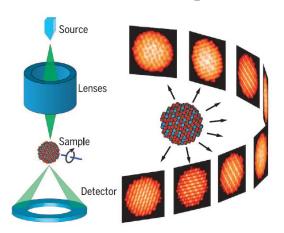
- 1. **Determination of 3D position** PdH nanoparticle
- 2. Find out what atomic structure the PdH nanoparticles form.
- 3. **Obtain quantitative properties of** new structure PdH nanoparticles .

Description of data processing

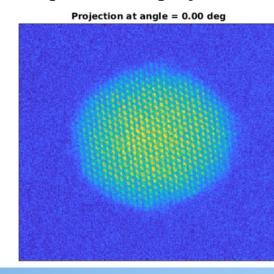
Intro

Method

1. Sample preparation


• Palladium hydride nanoparticles synthesized in GLC

2. Data acquisition through STEM(Scanning Transmission Electron Microscopy)


- Size of nanoparticle : about 8 nm diameter
- Accelerating voltage: 300 kV
- Detector : HAADF STEM mode
- # of projection : 33 projections (# of projection is determined by beam damage test)
 - & 10 images per tilt angle (for drift correction)
- Angle range = [-70,70]
- Get projections and tilt angles.

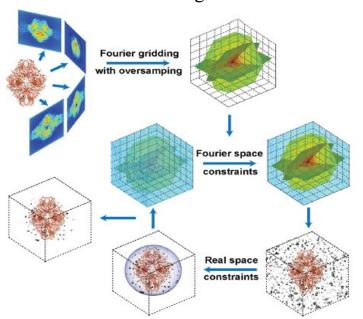
Process of data acquisition

Experimental projections

Description of data processing

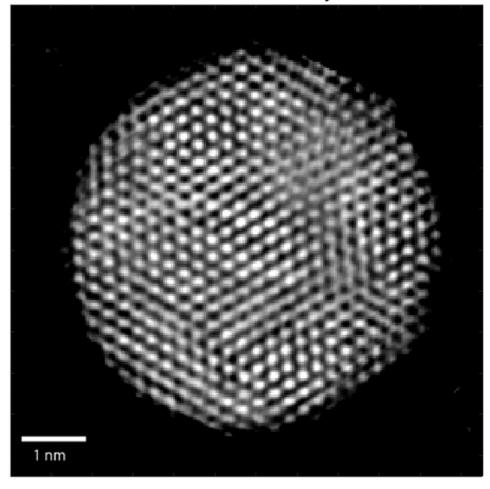
Intro

Method


3. Post processing

- Drift correction, De-noising, Alignment

4. 3D reconstruction


- GENeralized Fourier Iterative Reconstruction

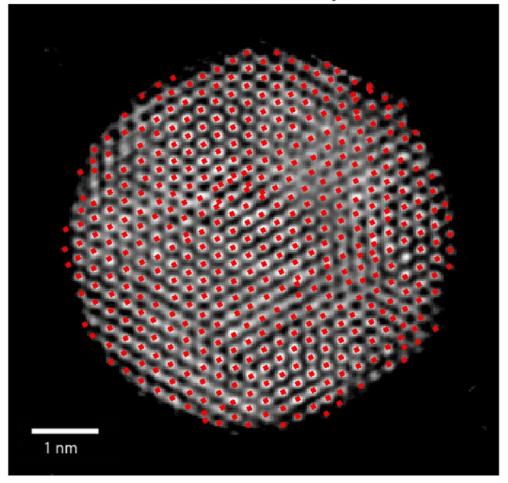
GENFIRE algorithm

Reconstruction layer by layer result

Reconstruction of atomic layer 16

sliced along z axis (c axis of HCP structure)

Description of data processing


Intro

Method

Result

5. Atom tracing

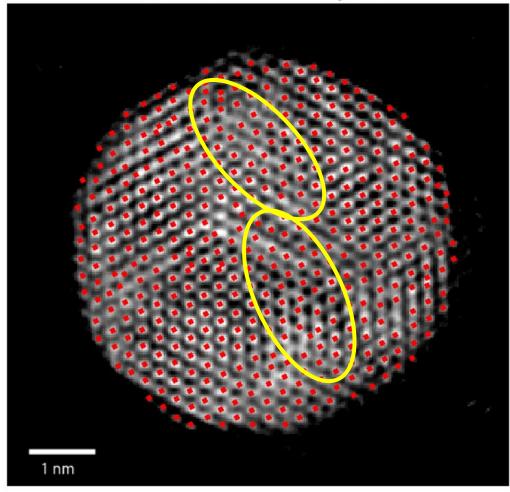
Reconstruction of atomic layer 16

6. Fitting HCP structure

- Assume single crystal
- Fitting proper HCP lattice vector
- Assign atoms to the HCP structure created

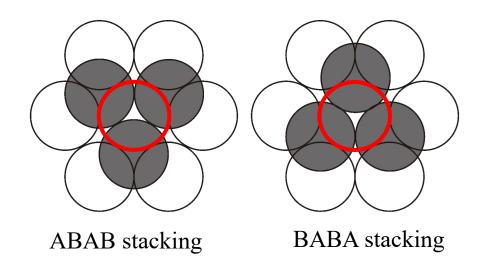
- Get lattice constant a & c
- 96 % assignment fraction

Grain structure of PdH nanoparticle


Intro

Method

Result


Discussion

Reconstruction of atomic layer 13

Problem of single crystal fitting

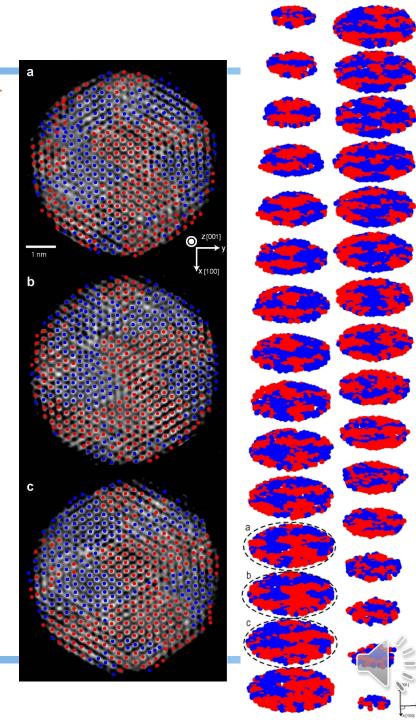
- 1. Lattice mismatch
- 2. Difference from lattice constant obtained by diffraction pattern
- 3. Low assignment fraction

Grain structure of PdH nanoparticle

Intro

Method

Result


Discussion

Assume non-single crystal

- Select a stacking type having a high fitting rate for each atom.
- Clear segregation and boundary are seen (multi-grain structure).
- HCP fitting is performed based on this grain structure.

Domain analysis is required based on how close it is to the locally ideal HCP structure

Domain analysis

Intro Method

Result

Discussion

Well matched lattice

• Higher assignment fraction

• Lower lattice constant difference

$$a_{domain} = 295.30 \text{ pm}$$

 $a_{diffraction} = 290.36 \text{ pm}$

$$\triangle a = 5.03 \text{ pm}$$

$$c_{domain} = 466.92 \text{ pm}$$

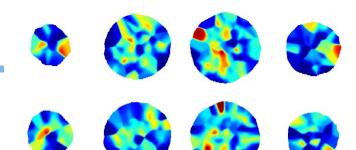
 $c_{diffraction} = 466.18 \text{ pm}$

$$\triangle c = 0.74 \text{ pm}$$

- Domain 1 atom
- Domain 2 atom
- Fitted HCP structure atom
- Atom not assigned to HCP structure

Method Intro

Result


Discussion

• Local property analysis is performed considering the region containing nearest neighbor of the ideal HCP structure.

- Calculate local cell volume and predict possible hydrogen storage capacity (H concentration) through density function theory.
- Spatial variation of hydrogen concentration in nanoparticles

Local volume per atom : $V_{FCC} = 14 \text{ Å}^3 < V_{HCP} = 18 \text{ Å}^3$

H concentration: $x_{FCC} < 1 < x_{HCP} = 1.3056$ (in PdH_x)

0.6

0.4

Summary

Intro Method Result Discussion Summary

- Through AET, it is possible to **get precise 3D atomic position** of PdH nanoparticles.
- After confirming that it has a grain structure, **domain analysis** was performed.
- It was **confirmed that each domain has an HCP structure**, and its parameters are consistent with the results of the diffraction analysis.
- Get local cell volume and local H concentration map.
- Compared to the existing FCC palladium nanoparticles, it has a larger local cell volume and more H concentration.
- Through local property analysis, it is possible to quantitatively grasp the atomic scale mechanism and property of nanoparticle.

