

Chemical and Biological Characterization of Fermentation Extract from *Cudrania tricuspidata* Bureau

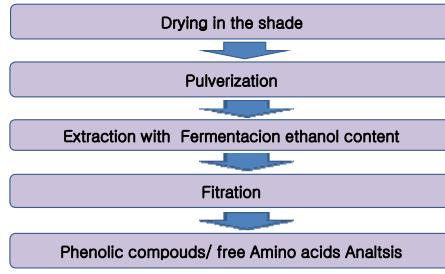
Geon-Ung Jo*, Da-hye Jung, Da-in Kim, Hyoun-Woo Kim, Bo-Mi Jeong, Chan-Jin Oh, Jae-Gwang Kim
Jeonnam Forest Resources Research Institute

Abstract

Cudrania tricuspidata is a deciduous bread-leaved small tree belonging to the family Moraceae. Since ancient times, *C. tricuspidata* has anticancer, liver protecting, and brightening effects, and is recorded in classical literature. *A. oryzae* various taste and aroma. It is known to exhibit various physiological activities. In this study, we investigated the antioxidant active substances according to fermentation time by inoculating *A. oryzae* with *C. tricuspidata* leaves and fruit, and evaluated the physiological activity to determine the optimal fermentation conditions. It was chlorogenic acid, resveratrol increased more than twice in the fermented extract for 36 hours, and the antioxidant, total phenol, and flavonoid contents increased. also through amino acid analysis, it was confirmed that various amino acid compositions such as asparagine and aspartic acid were changed according to fermentation time. Therefore, it is expected that functional product, physiological activity increase, and quality improvement can be expected when developing products using *A. oryzae* and it can be used as basic data when setting the optimal manufacturing process in the future.

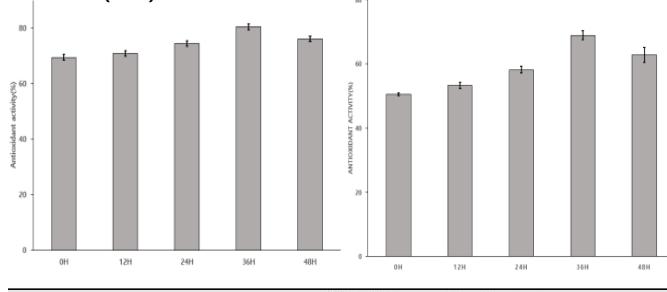
Method and Material

Cudrania Tricuspidate : collected at Jeonnam Shinan sites in Korea
Extraction: Dionex ASE 350


HPLC for LC-MS : Agilent 1200 series HPLC

YMC ODS C-18 column
(250 x 4.6 mm, 5μm)

Flow rate : 0.8 mL/min


Solvents: H₂O /acetonitrile gradient
injection volume : 10 μL
column oven temp: 40°C
detector : 254nm

Procedure:

Result

Table. 1. Antioxidant activity of fermentation extracts *C. tricuspidata* Leaf, Fruit DPPH, Flavonoid assay Each value was mean± SD (n=3).

Extract	Total flavonoid Content (Gallic Acid eq. mg/g)	
	Leaf	Fruit
Leaf	74.8 ± 1.8	23.5 ± 1.2
12 hour	75.2 ± 1.4	31.3 ± 1.1
24 hour	79.1 ± 1.2	38.1 ± 2.1
36 hour	82.4 ± 0.8	47.4 ± 2.8
48 hour	81.2 ± 1.1	42.2 ± 2.4

References

Jeong, G. S.; Lee, D. S.; Kim, Y. C. (2009). Cudranicusanthone A from *Cudrania tricuspidata* suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. *International Immunopharmacol.* 9(2): 241-246.

Lee, Y. J.; Kim, S. J.; Harm, I.; Whang, W. K. (2009). "Antioxidant activities of new flavonoids from *Cudrania tricuspidata* root bark." *Archives of Pharmacal Research* 32: 195-200.

Kim, J. Y.; Chung, J. H.; Hwang, I. (2009). "Quantification of quercetin and kaempferol contents in different parts of *Cudrania tricuspidata* and their processed foods." *Korean Journal of Horticultural Science & Technology* 27: 489.

Jeong, D. S.; Youn, K. W. (2016). "Comparison of the antioxidant and physiological activities of grape seed extracts prepared with different drying methods." *Korean Journal of Food Preservation* 23: 1738-1748.

Cui, J.; Chisti, Y. (2003). "Polysaccharopeptides of *Coriolus versicolor* physiological activity uses and production." *Biotechnology Advances* 21(2): 109-122.

Tian, Y. H.; Kim, H. C.; Cui, J. M.; Kim, Y. C. (2005). "Hepatoprotective constituents of *Cudrania tricuspidata*." *Archives of Pharmacal Research* 28: 44-48.

Sung, N. J.; Chung, S. Y. (1984). "Changes in nitrogenous compounds of soybean during chungkukjang koji fermentation" *Korean Journal of Food Preservation* 13: 275-284.

Park, K. H.; Park, Y. D.; Han, J. M. (2006). "Anti-atherosclerotic and anti-inflammatory activities of catechol xanthones and flavonoids isolated from *Cudrania tricuspidata*." *Biorganic & Medicinal Chemistry Letters* 16: 5580-5583.

Lee, H. J.; Cho, S. A.; Shin, J. G.; Kim, J. S. (2007). "Quality and functional compounds of commercial Chungkukjang powders." *Korean Journal of Food Preservation* 36: 65-71.

Cooney, R. V.; Ross, P. D. (1987). "N-nitrosation and N-nitration of morpholine by nitrogen dioxide in aqueous solution effect of vanillin and related phenols." *Journal of Agricultural and Food Chemistry* 35: 789-793.

Kang, D. H.; Kim, J. W.; Youn, K. S. (2013). "Antioxidant activities of extracts from fermented *Cudrania tricuspidata* fruit, and inhibitory actions on elastase and tyrosinase." *Korean Journal of Food Preservation* 18(2): 236-243.

Kawashima, K.; Itoh, H. (1979). "Antioxidant properties of branched-chain amino acid derivative." *Chemical and Pharmaceutical Bulletin* 27: 1912-1916.