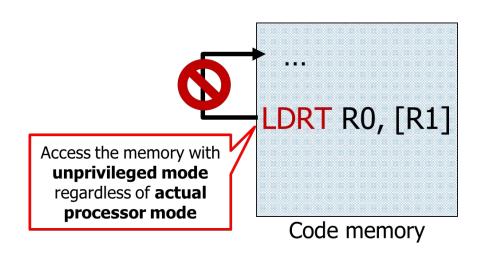
하드웨어 기능을 활용한 임베디드 시스템 보안 연구

부산대학교 정보컴퓨터공학부 권동현 교수

Embedded System Security

- 사물인터넷 시대 도래
- 임베디드 시스템의 보안 중요성 증대
 - 스마트 TV 등 스마트 가전에 탑재된 카메라 해킹
 - 임베디드 기기가 탑재된 의료기기의 오동작 유도
 - 스마트 카에 탑재된 센서 정보 변조

But, in low-end embedded systems..


- Constrained computing resources
 - Low cost, low power consumption
 - Small memory, Low CPU clock speeds

- Lack of processor architectural supports
 - No MMU (no virtualization)
 - Few security extensions

1. Use Existing Hardware Features

- uXOM: Efficient eXecute-Only Memory on ARM Cortex-M
 - Presented at USENIX Security '19
 - eXecute-Only-Memory (XOM)
 - Use as a primitive for many security solutions
 - Already provided in high-end processor architecture
 - uXOM
 - Use unprivileged memory instructions (LDRT, STRT) in ARMv7-M
- Other features
 - ARM TrustZone-M

2. Add New Hardware Features

- RiskiM: Toward Complete Kernel Protection with Hardware Support
 - Presented at Design Automation and Test in Europe (DATE) '19
 - Integrity Monitor
 - Monitor various system behaviors
 - Memory events, system configuration, executed instructions ...
 - Add special hardware interface for this
- Next step
 - Add special instructions for security

Conclusion

- Embedded system security
 - Using existing hardware features
 - Adding new hardware features
- There are opportunities
 - Numerous use cases
 - RISC-V open source ISA
- Contacts
 - E-mail: kwondh at pusan dot ac dot kr
 - Site: https://sites.google.com/view/csl-pnu