

신진학자 워크숍

Enabling Ubiquitous AI via Adaptive and Efficient On-Device ML

공태식 조교수(UNIST)

Enabling Ubiquitous Al via Adaptive and Efficient On-Device ML

Taesik Gong

Who am I?

Taesik Gong

Assistant Professor

@ CSE & AIGS, UNIST
2024.08 ~

https://taesikgong.com/

Experience

- Visiting Scholar, University of Cambridge, Cambridge, UK, 2024
- Research Scientist, Nokia Bell Labs, Cambridge, UK, 2023-2024
- Research Intern, Google Research, NYC, USA, 2022
- Research Intern, Microsoft Research, Beijing, China, 2019
- Research Intern, Nokia Bell Labs, Cambridge, UK, 2018

Education

- KAIST: Ph.D., School of Computing, 2023
- KAIST: M.S., School of Computing, 2017
- Yonsei University: B.S., Computer Science, 2016

Research areas

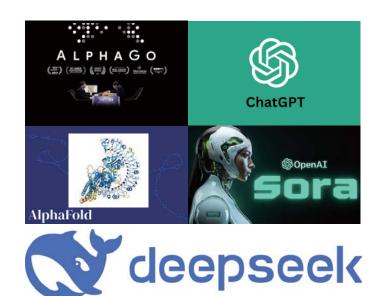
- Human-Centered Al
- Adaptive & Personalized Al
- On-Device Al Systems

Selected Publications

- AI/ML: ICLR '25, NeurIPS '24, EMNLP '24, CVPR '24, NeurIPS '23, NeurIPS '22
- Ubiquitous Computing: SenSys '25, UbiComp '24, UbiComp '23, CHI '22, SenSys '19, UbiComp '19

Our Lab's Mission: Making Al Ubiquitous

Foundational AI



Ubiquitous AI

Security
Low latency
Personalization

On-Device AI: The Backbone of Ubiquitous AI

Running Al models on edge devices without cloud servers

Tesla Autopilot 4.0 (2023.03)

Google Gemini Nano (2023.12)

Nano Samsung Live Translate (2024.01)

Apple Intelligence

Our Research Directions

Direction 1

Human-Centered Al Applications

- Knocker (UbiComp '19)
- MilliCat (MobileHCI '20)
- MyDJ (CHI '22)
- MIRROR (UbiComp '24)

Direction 2

Adaptive & Personalized Al

- NOTE (NeurIPS '22)
- SoTTA (NeurIPS '23)
- AETTA (CVPR '24)
- Lens (ICLR '25)

Direction 3

Resource-Efficient On-Device Al

- DAPPER (UbiComp '23)
- DEX (NeurlPS '24)
- Self-Replay (SenSys '25)
- Synergy (TMC '25)

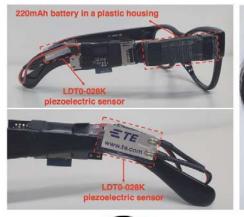
Direction 1: Human-Centered Al Applications

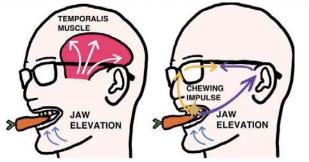
"How can we enrich users' daily lives with on-device AI?"

Object Interaction (UbiComp '19)

*Featured by KBS, MBC, YTN

Eating Tracking (CHI '22)



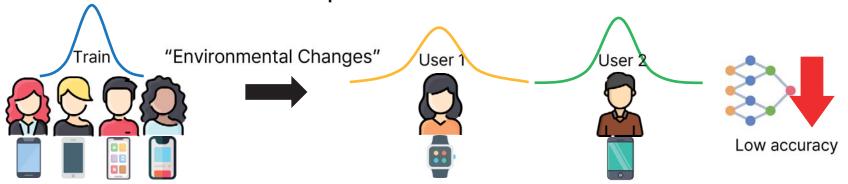


*Best Paper Honorable Mention

Virtual Try-On (UbiComp '24)

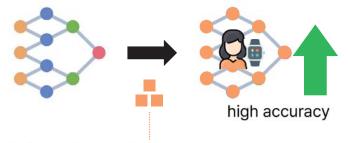
Direction 2: Adaptive & Personalized Al

"How can we adapt AI to different environments?"



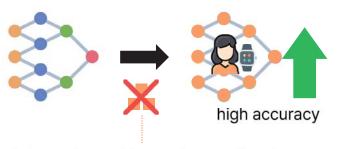
Requirements: (1) accuracy \uparrow (2) computation \downarrow (3) user burden \downarrow

Few-Shot Adaptation (SenSys '19, TMC '22, UbiComp '23)



Adaptation with one or two samples

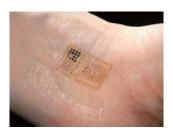
Test-Time Adaptation (NeurIPS '22, NeurIPS '23, CVPR '24)



Adaptation without data collection

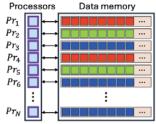
Direction 3: Resource-Efficient On-Device Al

"How can we support AI in a resource-efficient manner?"

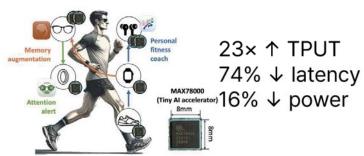


Performance Estimator (UbiComp '23) Tiny Al Accelerator (NeurIPS '24) Wearable Collaboration (TMC '25)

396× ↓ latency 40% ↑ accuracy



21× ↑ utilization 3% ↑ accuracy



Our Research Directions

Direction 1

Human-Centered Al Applications

- Knocker (UbiComp '19)
- MilliCat (MobileHCI '20)
- MyDJ (CHI '22)
- MIRROR (UbiComp '24)

Direction 2

Adaptive & Personalized Al

- NOTE (NeurIPS '22)
- SoTTA (NeurlPS '23)
- AETTA (CVPR '24)
- Lens (ICLR '25)

focus

Direction 3

Resource-Efficient On-Device Al

- DAPPER (UbiComp '23)
- DEX (NeurIPS '24)
- Self Replay (SenSys '25)
- This talk's Synergy (TMC '25)

SoTTA: Robust Test-Time Adaptation on Noisy Data Streams

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee **NeurIPS 2023**

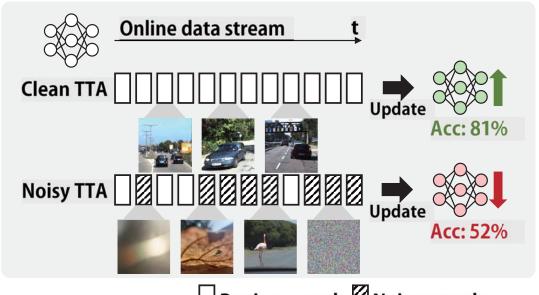
Illustration of Test-Time Adaptation (TTA)



TTA gradually adapts to unseen environments as it's being used

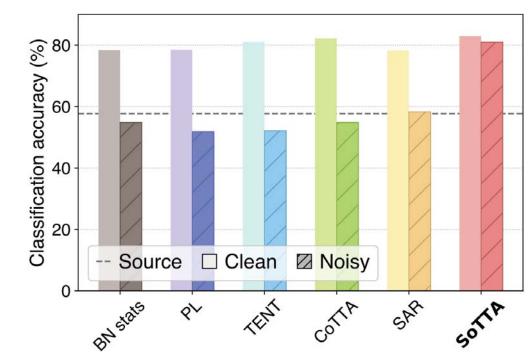
Test Samples Can be Unexpectedly Diverse in the Wild

Example: Autonomous driving scenario



Benign sample Noisy sample

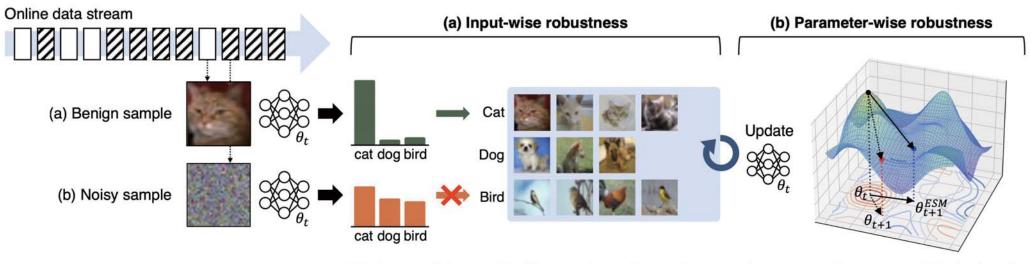
Prior methods fail with noisy test data



→Models are contaminated with noisy samples

SoTTA: Screening-out Test-Time Adaptation

Goal: reduce the impact of noisy samples in TTA



High-confidence Uniform-class Sampling (HUS)

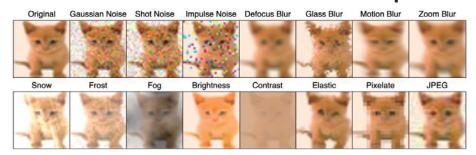
: avoids selecting noisy samples when updating the model

Entropy-Sharpness Minimization (ESM)

: makes parameters resilient to weight perturbation caused by noisy samples

Evaluation with five scenarios (CIFAR10-C)

TTA benchmark: CIFAR10 + 15 Corruptions



Five noisy sample scenarios

(a) Benign.

(b) Near.

(c) Far.

(d) Attack.

(e) Noise.

A	ccu	ra	су	\uparrow	(%)

Method	Benign	Near	Far	Attack	Noise	Avg.
Source	57.7 ± 1.0					
BN Stats [27]	78.4 ± 0.3	76.6 ± 0.4	75.2 ± 0.3	55.9 ± 1.4	54.8 ± 0.8	68.2 ± 0.5
PL [17]	78.5 ± 0.3	73.4 ± 0.2	69.8 ± 1.5	66.3 ± 1.3	51.8 ± 0.9	68.0 ± 0.6
TENT [38]	81.0 ± 0.4	74.3 ± 0.9	71.2 ± 1.0	68.9 ± 0.9	52.1 ± 0.4	69.5 ± 0.4
LAME [1]	55.9 ± 0.5	56.4 ± 0.6	55.5 ± 0.4	55.9 ± 0.5	54.9 ± 0.6	55.7 ± 0.5
CoTTA [39]	82.2 ± 0.2	78.4 ± 0.4	74.5 ± 1.2	69.5 ± 1.5	54.8 ± 1.3	71.9 ± 0.4
EATA [28]	82.4 ± 0.2	63.9 ± 0.4	56.3 ± 0.5	70.9 ± 0.6	36.0 ± 0.8	61.9 ± 0.2
SAR [29]	78.3 ± 0.7	72.4 ± 8.8	73.3 ± 3.9	56.2 ± 1.8	58.3 ± 0.3	67.7 ± 2.4
RoTTA [44]	75.5 ± 0.7	77.7 ± 0.6	77.1 ± 1.1	78.4 ± 0.7	73.6 ± 0.5	76.5 ± 0.7
SoTTA	82.2 ± 0.3	81.4 ± 0.5	81.6 ± 0.6	84.5 ± 0.2	80.0 ± 1.4	81.9 ± 0.5

- Most existing TTA methods show performance degradation under noisy test streams
- SoTTA is robust to noisy streams and outperforms the best baseline by 5.4%p

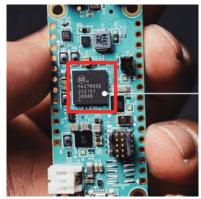
DEX: Data Channel Extension for Efficient CNN Inference on Tiny Al Accelerators

Taesik Gong, Fahim Kawsar, Chulhong Min NeurIPS 2024

Microcontroller units (MCUs)

Tiny Al Accelerators: New On-Device Al Platforms

Tiny Al Accelerator (MAX78000, 8mm × 8mm)



Omnibuds by Bell Labs https://omnibuds.tech/

2000 1760 KWS (SE) 1500 KWS 400 FaceID FaceID

Tiny Al Accelerators

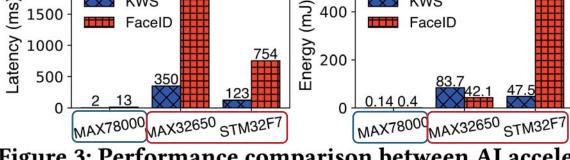


Figure 3: Performance comparison between AI accelerator (MAX78000) and MCUs (MAX32650 and STM32F7).

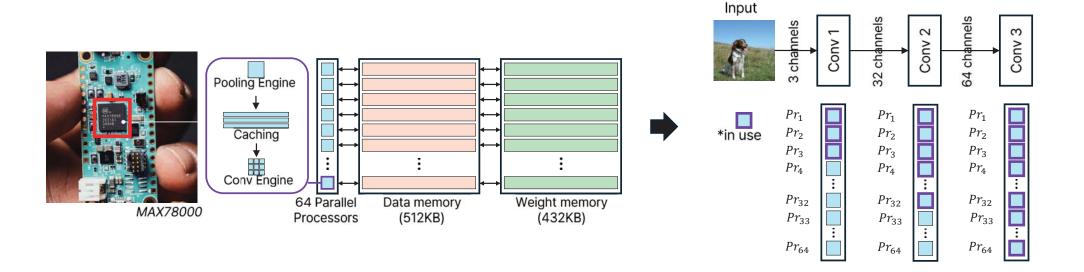
- 62~175× faster inference
- 105~1160× less energy consumption

→ Opportunity of (1) reduced latency, (2) lower power cost, and (3) improved privacy for on-device AI

Why Are Tiny Al Accelerators Fast? Parallelization

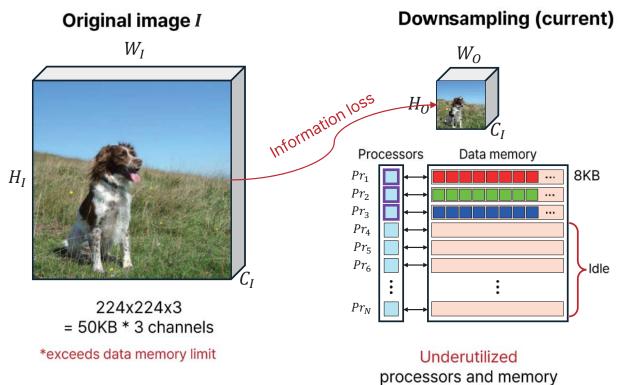
Architecture of Tiny AI Accelerator

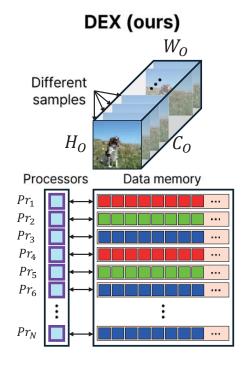
Parallelization across channels



Parallel data access and processing are the keys to fast inference

Tiny Al Accelerator Lacks Data Memory





Improves accuracy with **additional spatial information**with the same inference latency

Latency

DEX: Result

Accuracy

Dataset	Method	SimpleNet	WideNet	EfficientNetV2	MobileNetV2	AVG (%)	Model	Method	InputChan	Size (KB)	InfoRatio (×)	ProcUtil (%)	Latency (µs)
	Downsampling CoordConv	57.8 ± 1.2 58.0 ± 1.1	61.8 ± 0.2 61.7 ± 0.2	51.3 ± 0.5 51.9 ± 0.1	62.0 ± 0.7 61.6 ± 0.3	58.3	Downsampling CoordConv	3	162.6 162.9	1.0 1.0	4.7 7.8	2592 ± 1 2592 ± 2	
ImageNette	CoordConv (r) DEX (ours)	55.4 ± 1.5 61.4 ± 0.6	61.4 ± 0.2 65.6 ± 0.6	51.7 ± 1.0 56.8 ± 0.5	61.2 ± 1.1 64.4 ± 0.6	57.4 62.0	SimpleNet	CoordConv (r) DEX (ours)	6 64	163.0 171.2	1.0 21.3	9.4 100.0	2592 ± 2 2592 ± 1 2591 ± 1
Caltech101	Downsampling CoordConv CoordConv (r)	54.6 ± 2.1 53.8 ± 1.6 52.7 ± 0.5	55.8 ± 1.2 56.5 ± 0.1 56.0 ± 1.7	38.6 ± 0.9 38.7 ± 0.2 38.2 ± 1.0	51.4 ± 1.6 49.8 ± 0.5 49.7 ± 1.2	50.1 49.7 49.1	WideNet	Downsampling CoordConv CoordConv (r)	3 5 6	306.4 306.9 307.1	1.0 1.0 1.0	4.7 7.8 9.4	3820 ± 1 3820 ± 0 3819 ± 1
	DEX (ours)	56.9 ± 1.3	61.1 ± 1.4	45.9 ± 1.9	53.3 ± 1.7		54.3	DEX (ours)	64	319.3	21.3	100.0	3818 ± 1
Caltech256	Downsampling CoordConv CoordConv (r) DEX (ours)	19.8 ± 0.6 19.8 ± 0.5 20.0 ± 1.6 22.8 ± 0.5	20.8 ± 0.5 21.3 ± 0.8 20.9 ± 0.6 22.9 ± 0.9	14.7 ± 0.4 14.8 ± 0.8 14.5 ± 0.3 18.3 ± 0.9	22.4 ± 1.0 22.7 ± 0.8 22.7 ± 0.4 26.3 ± 0.5	19.4 19.6 19.5 22.6	EfficientNetV2	Downsampling CoordConv CoordConv (r) DEX (ours)	3 5 6 64	742.4 743.0 743.2 759.6	1.0 1.0 1.0 21.3	4.7 7.8 9.4 100.0	11688 ± 2 11685 ± 3 11689 ± 1 11690 ± 2
Food101	Downsampling CoordConv CoordConv (r) DEX (ours)	16.0 ± 0.4 16.1 ± 0.8 16.3 ± 0.4 18.4 ± 0.4	17.7 ± 0.7 17.7 ± 0.3 17.3 ± 0.6 20.9 ± 0.4	12.1 ± 0.2 12.0 ± 0.1 12.0 ± 0.6 16.4 ± 0.1	22.4 ± 0.6 21.7 ± 0.3 20.9 ± 0.3 23.3 ± 1.1	17.1 16.9 16.6 19.8	MobileNetV2	Downsampling CoordConv CoordConv (r) DEX (ours)	3 5 6 64	1317.8 1318.2 1318.4 1330.7	1.0 1.0 1.0 21.3	4.7 7.8 9.4 100.0	3553 ± 4 3554 ± 1 3554 ± 2 3552 ± 3

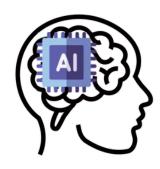
DEX improves accuracy by 3.5%p while keeping the inference latency the same on the tiny Al accelerator

Ongoing & Future Work

Personal Multi-Modal LLM Agents

Personalization + On-device LLM

Human memory augmentation



LLM + context analysis

AI-powered ingestible pill

On-device AI + medical problem

We are always open to collaborations—please feel free to reach out!

Prof. Taesik Gong CSE & AIGS, UNIST taesik.gong@unist.ac.kr

SoTTA: Impact of individual components

Input-wise robustness: <u>High-Confidence Uniform-Class Sampling (HUS)</u>

Parameter-wise robustness: Entropy-Sharpness Minimization (ESM)

Method	Benign	Near	Far	Attack	Noise	Avg.
Source	57.7 ± 1.0					
HC	34.9 ± 4.8	13.6 ± 0.3	17.6 ± 3.8	16.9 ± 1.6	16.8 ± 0.2	20.0 ± 2.0
UC	66.4 ± 3.0	62.1 ± 0.8	56.5 ± 2.0	70.0 ± 3.9	59.5 ± 3.0	62.9 ± 0.7
HC + UC (HUS)	69.8 ± 1.1	61.7 ± 1.3	58.4 ± 0.5	40.9 ± 5.5	58.9 ± 2.6	57.9 ± 0.8
ESM	82.6 ± 0.2	77.9 ± 0.4	72.8 ± 0.7	83.4 ± 0.2	60.5 ± 1.8	75.4 ± 0.5
HC + ESM	82.3 ± 0.2	80.9 ± 0.6	74.9 ± 2.4	83.5 ± 0.2	68.7 ± 7.0	78.0 ± 2.0
UC + ESM	82.2 ± 0.2	78.0 ± 0.4	75.9 ± 0.5	84.3 ± 0.1	77.7 ± 0.7	79.6 ± 0.2
HUS + ESM (SoTTA)	82.2 ± 0.3	81.4 ± 0.5	81.6 ± 0.6	84.5 ± 0.2	80.0 ± 1.4	81.9 ± 0.5

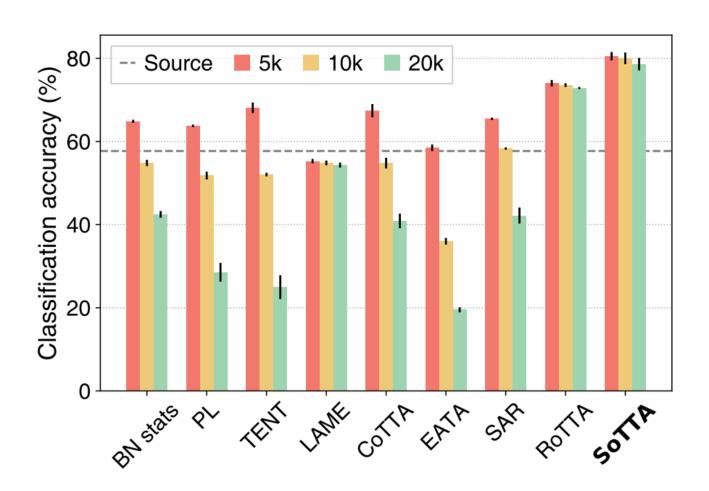
- The accuracy is improved as we sequentially added each approach of SoTTA
- Ensuring both input-wise and parameter-wise robustness via HUS and ESM is a synergetic strategy

SoTTA: CIFAR100-C & ImageNet

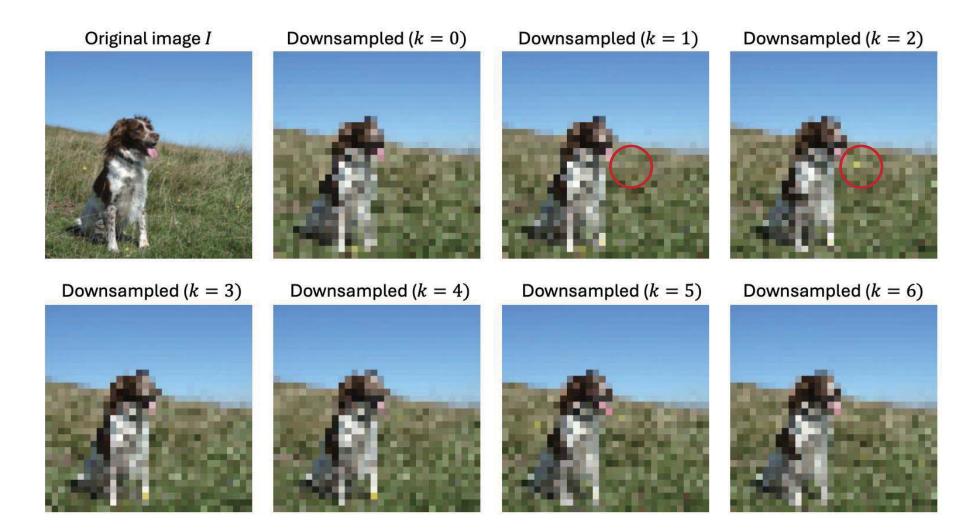
Method	Benign	Near	Far	Attack	Noise	Avg.
Source	33.2 ± 0.4					
BN Stats [27]	53.7 ± 0.2	50.8 ± 0.1	46.8 ± 0.1	29.2 ± 0.4	28.3 ± 0.3	41.8 ± 0.1
PL [17]	56.6 ± 0.2	48.0 ± 0.3	42.8 ± 0.7	39.0 ± 0.4	23.8 ± 0.6	42.1 ± 0.3
TENT [38]	59.5 ± 0.0	46.4 ± 1.4	40.0 ± 1.3	31.9 ± 0.7	20.0 ± 0.9	39.5 ± 0.7
LAME [1]	31.0 ± 0.5	31.5 ± 0.5	30.8 ± 0.7	31.0 ± 0.6	31.1 ± 0.7	31.1 ± 0.6
CoTTA [39]	55.8 ± 0.4	50.0 ± 0.3	42.4 ± 0.4	37.2 ± 0.2	27.3 ± 0.3	42.6 ± 0.2
EATA [28]	23.5 ± 1.9	6.1 ± 0.3	4.8 ± 0.5	3.7 ± 0.6	2.4 ± 0.2	8.1 ± 0.3
SAR [29]	57.3 ± 0.3	55.4 ± 0.1	51.2 ± 0.1	34.4 ± 0.3	38.1 ± 1.2	47.3 ± 0.3
RoTTA [44]	48.7 ± 0.6	49.4 ± 0.5	49.8 ± 0.9	51.5 ± 0.4	48.3 ± 0.5	49.6 ± 0.6
SoTTA	60.5 ± 0.0	57.1 ± 0.2	59.0 ± 0.4	61.9 ± 0.0	58.6 ± 1.0	59.4 ± 0.3
Mathad	D	Manu	Г.	A 441-	NT.:	A

Method	Benign	Near	Far	Attack	Noise	Avg.
Source	14.6 ± 0.0					
BN Stats [27]	27.1 ± 0.0	18.9 ± 0.1	14.8 ± 0.0	17.4 ± 0.8	12.8 ± 0.0	18.2 ± 0.1
PL [17]	30.5 ± 0.1	6.9 ± 0.0	5.1 ± 0.2	18.1 ± 1.3	3.4 ± 0.6	12.8 ± 0.2
TENT [38]	27.1 ± 0.0	18.9 ± 0.1	14.8 ± 0.0	17.4 ± 0.8	12.8 ± 0.0	18.2 ± 0.1
LAME [1]	14.4 ± 0.0	14.4 ± 0.1	14.4 ± 0.0	14.0 ± 0.6	14.3 ± 0.0	14.3 ± 0.1
CoTTA [39]	32.2 ± 0.1	23.3 ± 0.2	17.6 ± 0.2	28.3 ± 1.3	16.0 ± 0.9	23.4 ± 0.2
EATA [28]	38.0 ± 0.1	25.6 ± 0.4	23.1 ± 0.1	26.1 ± 0.1	20.7 ± 0.2	26.7 ± 0.0
SAR [29]	36.1 ± 0.1	27.6 ± 0.3	23.5 ± 0.4	26.8 ± 1.0	22.0 ± 0.4	27.2 ± 0.2
RoTTA [44]	29.7 ± 0.0	25.6 ± 0.4	29.2 ± 0.2	32.0 ± 1.2	31.2 ± 0.2	29.5 ± 0.3
SoTTA	39.8 ± 0.0	27.9 ± 0.3	36.1 ± 0.1	41.1 ± 0.1	39.0 ± 0.1	36.8 ± 0.0

SoTTA: Impact of the number of noisy samples



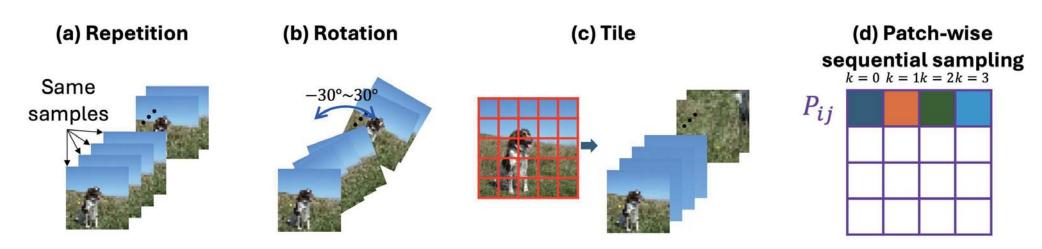
DEX: example images



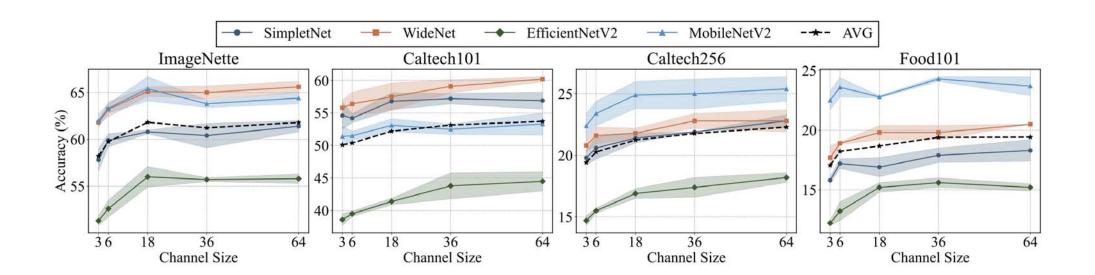
DEX: Comparison of data extension strategies

Table 4: Comparison of data extension strategies.

Method	InputChan	InfoRatio (×)	Accuracy
Downsampling	3	1.0	57.8 ± 1.2
Repetition	64	1.0	56.3 ± 0.8
Rotation	64	1.0	55.7 ± 0.6
Tile per channel	64	21.3	39.3 ± 0.9
Patch-wise seq.	64	21.3	60.4 ± 1.5
DEX	64	21.3	61.4 ± 0.6



DEX: Accuracy of DEX varying the channel size



신진학자 워크숍

Cyclic-Consistent Modality Translation between MRI and CT using Diffusion Models

최기환 조교수(서울과학기술대학교)

Cyclic-Consistent Modality Translation between MRI and CT using Diffusion Models

Kihwan Choi

Dept. of Applied Artificial Intelligence Seoul National University of Science & Technology May 30, 2025

Education & Work

B.S. in Electrical Engineering (1998. 3 ~ 2004. 2)

M.S. in **EECS** $(2004.3 \sim 2006.2)$

- Wireless Networks (Advisor: Sunghyun Choi)

M.S./Ph.D. in Electrical Engineering (2006. 9 ~ 2014. 4)

- Large-Scale Optimization, Medical Image Reconstruction

(Advisors: Lei Xing and Stephen Boyd)

M.S. in **Statistics** (2011.3 ~ 2013.1)

- Statistical Learning, Compressed Sensing

SW Solution Lab. (2014.4 ~ 2017.2)

- Vision for Autonomous Driving / Neural Processing Unit

Center for Bionics (2017. 3 ~ 2023.8)

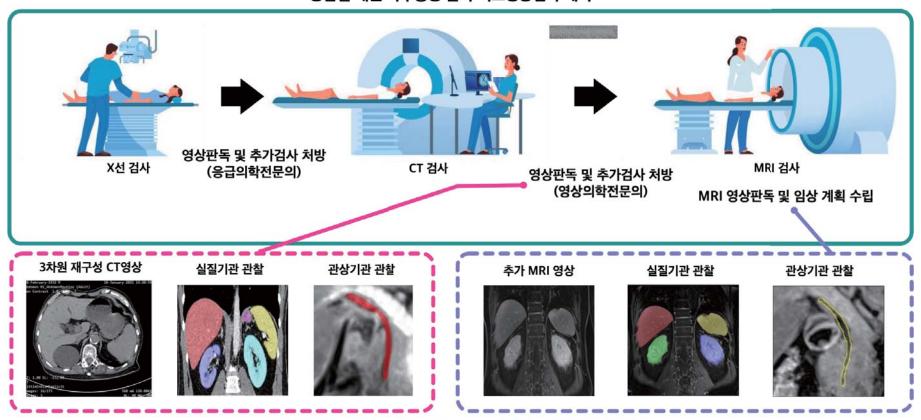
- Al for Medical Image Processing and Diagnosis

Department of Applied Artificial Intelligence (2023. 9 ~ Present)

- Biomedical Al System Laboratory (BAISLab)

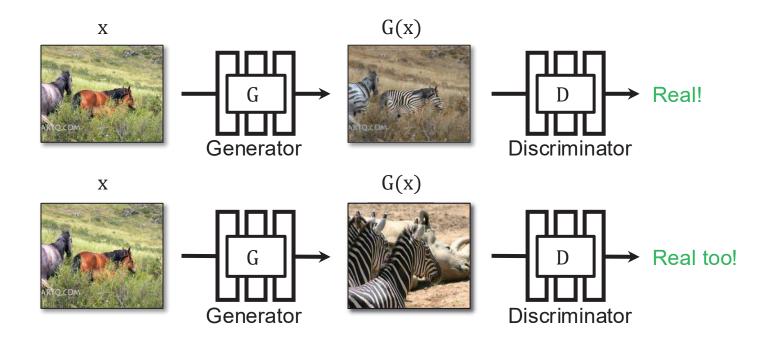
Demand on Modality Translation in ER

응급실 내원 복부통증 환자 의료영상검사 예시



CT영상판독/MR검사의 긴급성/CT-MRI영상간 비정합 문제 발생

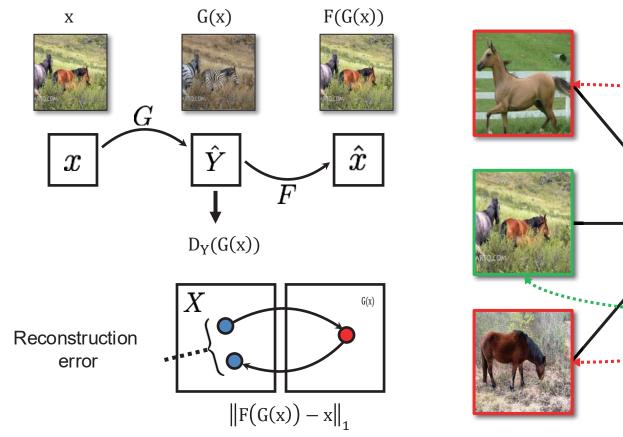
Background: GAN with Unpaired Data

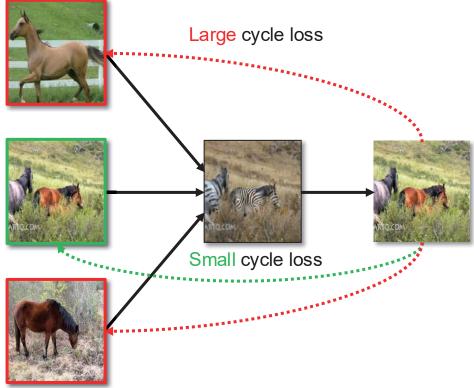


GANs do **not** force output to correspond to input!

Background: CycleGAN

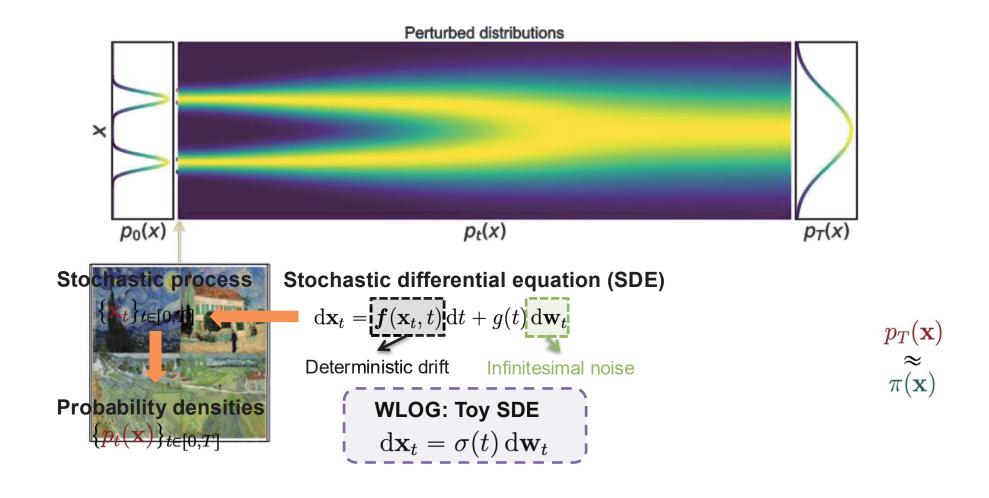
Cycle Consistency Loss





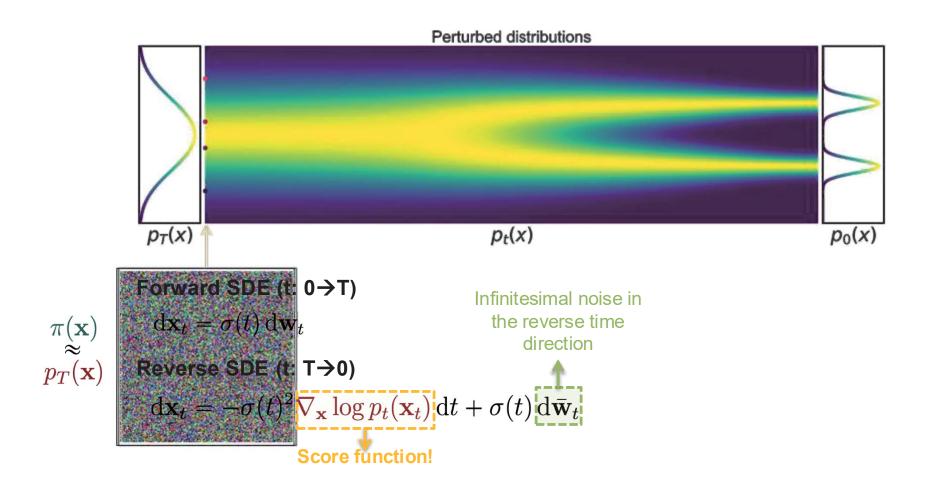
Background: Score-Based Diffusion Models

Perturbing data with stochastic processes



Background: Score-Based Diffusion Models

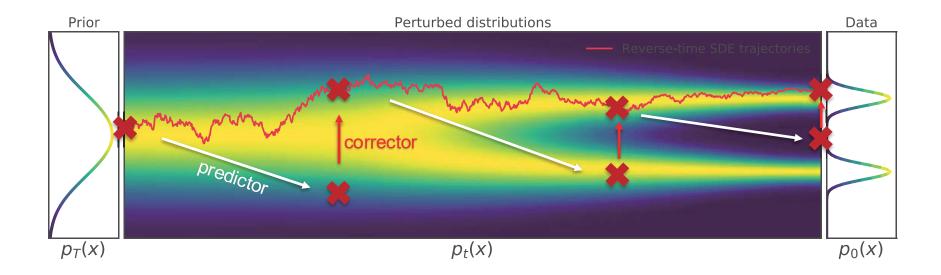
Generation via reverse stochastic processes



Background: Score-Based Diffusion Models

Predictor-Corrector sampling methods

- Predictor-Corrector sampling.
 - **Predictor:** Numerical SDE solver
 - Corrector: Score-based MCMC



Background: Score-Based Diffusion Models

Score-based generative modeling via SDEs

- Time-dependent score-based model
- Training: $\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x},t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

$$\mathbb{E}_{t \in \mathcal{U}(0,T)}[\lambda(t)\mathbb{E}_{p_t(\mathbf{x})}[\|\nabla_{\mathbf{x}}\log p_t(\mathbf{x}) - \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x},t)\|_2^2]]$$

Reverse-time SDE

$$d\mathbf{x} = -\sigma^2(t)\mathbf{s}_{\theta}(\mathbf{x}, t)dt + \sigma(t)d\bar{\mathbf{w}}$$

• Euler-Maruyama (analgous to Euler for ODEs)

$$\mathbf{x} \leftarrow \mathbf{x} - \sigma(t)^2 \mathbf{s}_{\theta}(\mathbf{x}, t) \Delta t + \sigma(t) \mathbf{z} \quad (\mathbf{z} \sim \mathcal{N}(\mathbf{0}, |\Delta t| \mathbf{I}))$$

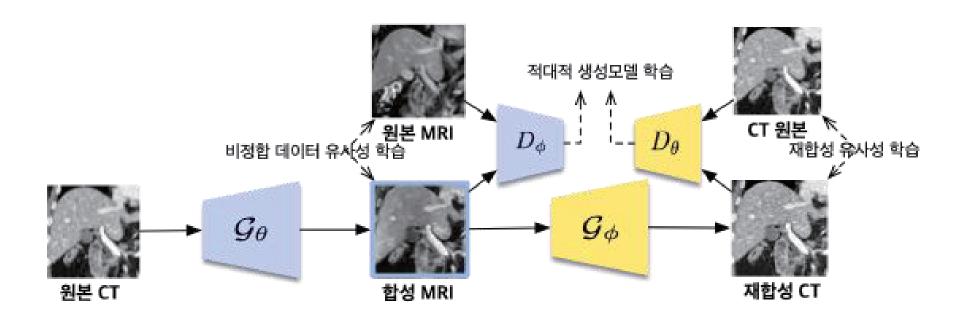
$$t \leftarrow t + \Delta t$$

Problem Specification

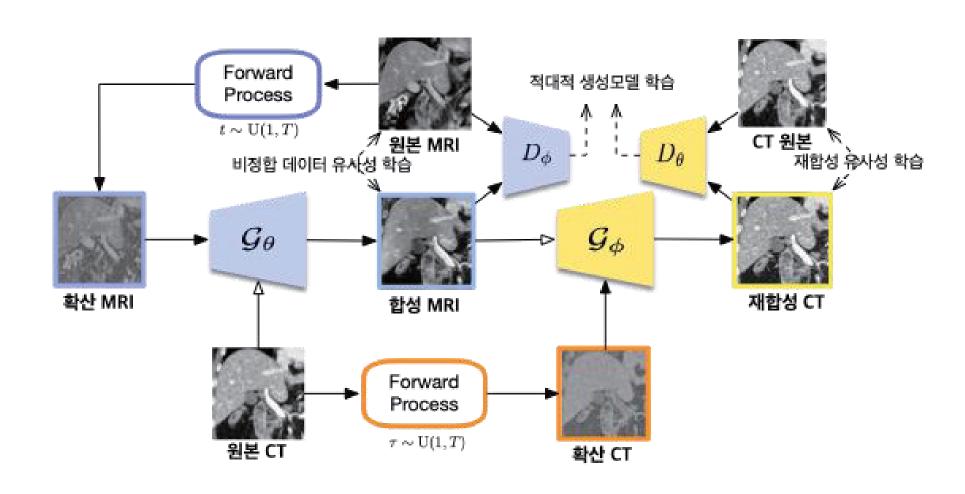
CT2MR Image Translation

- Has not been actively explored compared to MR2CT
- CT is first option at ER, while MR is secondary
- Objective: MR-less prediction of invisible anatomy (e.g. tubular organs)
- Constraints: no change in visible anatomy (e.g. solid organs)
- Collaboration with Korea University Medical Center

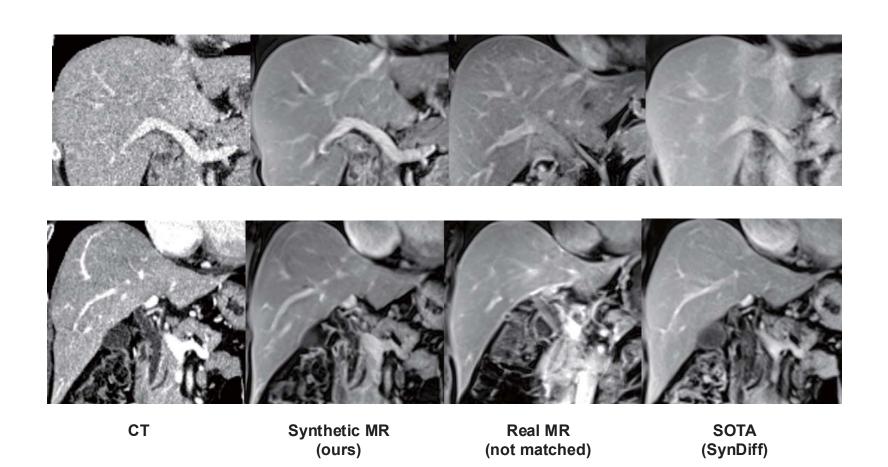
CycleGAN for CT-MRI Translation



Cyclic Diffusion Model for CT-MRI Translation



Cyclic Diffusion Model for CT-MRI Translation



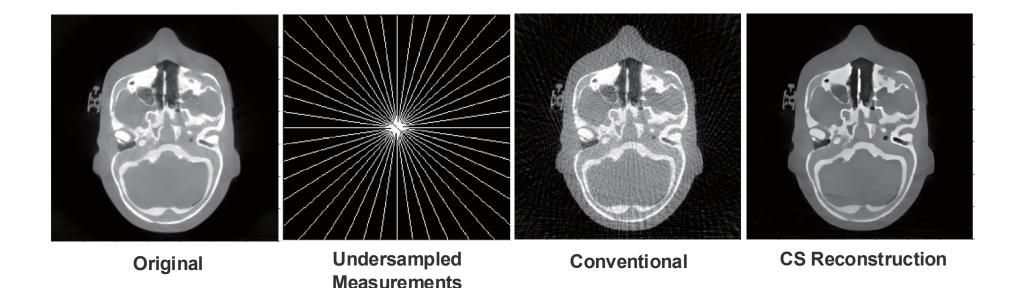
Previous Research: Sparse-View CT

"Compressed sensing based CBCT reconstruction with a first-order method" *Medical Physics* 2010

- Undersampled measurements
 - Fundamental theorem of algebra and Nyquist theorem: original signal cannot be recovered w/o aliasing
- Under some conditions we can perfectly recover signal
 - Signal can be expressed with sparse representations

$$\begin{array}{c|c} \mathbf{b} & = & \mathbf{A} \\ \\ \min \|x\|_{TV} := \sum_{t=t} |\nabla x(t_1,t_2)| \end{array}$$

s. t. Ax = b

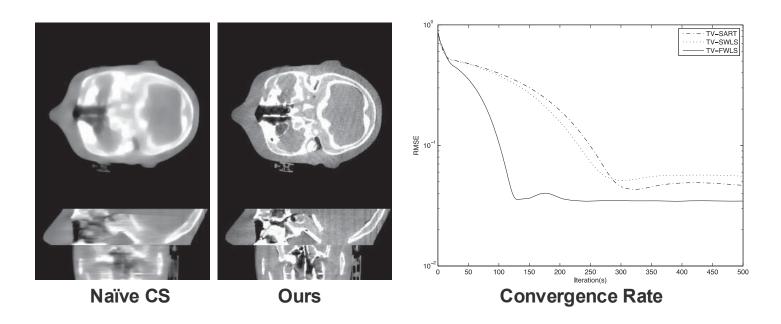


Previous Research: Sparse-View CT

"A Fourier-based compressed sensing technique for accelerated CT image reconstruction" *Physics in Medicine & Biology* 2014

- Fast and Accurate Compressed Sensing for CT Imaging
 - Optimization solver becomes slow and inefficient when Hessian matrix is ill-conditioned: $\lambda_{\max}(A^TA)\gg \lambda_{\min}(A^TA)$
 - Approach: Fourier-domain preconditioning inspired by conventional FBP:

$$ilde{A} := H^{1/2} \mathcal{F} W A$$
 and $\lambda_{\max}(ilde{A}^T ilde{A}) pprox \lambda_{\min}(ilde{A}^T ilde{A})$

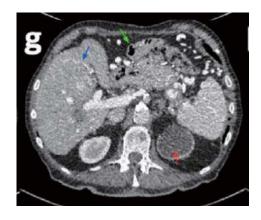


Previous Research: Self-Supervised Denoising

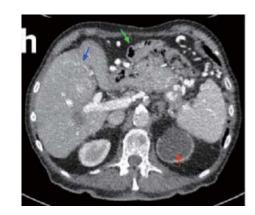
"Self-supervised inter-and intra-slice correlation learning for low-dose CT image restoration" *Expert Systems with Applications* 2022

- Self-Supervised Image Denoising
 - Applied self-supervised learning to denoise CT images without references
 - Trained to recover partially blinded inputs: $\mathcal{L}_{intra}(G; X) = \sum_{J \in \mathcal{J}} \mathbb{E}_{X_J c} \mathbb{E}_{X_J | X_J c} \| g(\mathbf{x}_{J^c}) \mathbf{x}_J \|_{\ell_2}$
 - Similarity between denoised images and thicker slices: $\mathcal{L}_{inter}(G; X) = \sum_{J \in \mathcal{J}} \mathbb{E}_X \| [G(f_J(\mathbf{x}))]_J \tilde{\mathbf{x}}_J \|_{\ell_1}$
 - Two-stage training strategy: offline pretraining and online finetuning

Noisy Input



Offline Pretrained

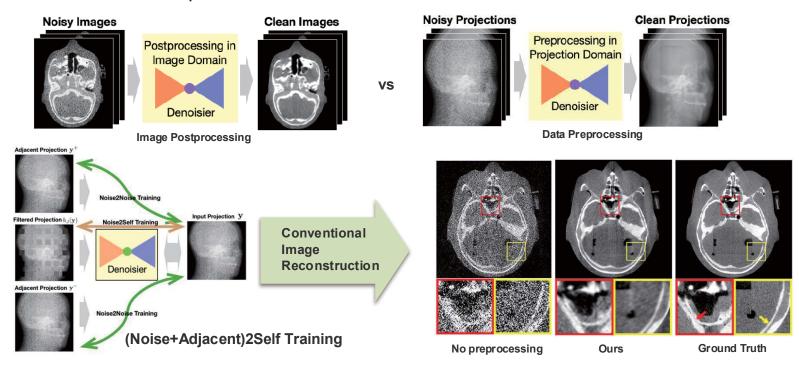


Online Finetuned

Previous: Self-Supervised Denoising

"Self-supervised denoising of projection data for low-dose cone-beam CT" *Medical Physics* 2023

- Self-Supervised Projection Denoising
 - Ground-truth not acquirable in CBCT with flat panel detector (due to scattering)
 - Applied self-supervised learning to denoise CBCT projections without references
 - Trained to recover partially blinded inputs
 - Considered both pixel-wise and view-wise statistical correlations



신진학자 워크숍

Pathfinding Future BCI Systems Through Full-Stack Design Space Exploration

이헌준 교수(한양대학교)

Pathfinding Future BCI Systems Through Full-Stack Design Space Exploration

Hunjun Lee

E-Mail: hunjunlee@hanyang.ac.kr

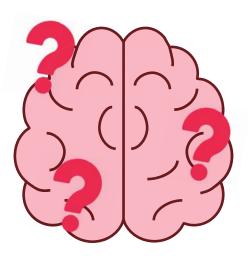
Web: hunjunlee.github.io

Assistant Professor

@Hanyang University

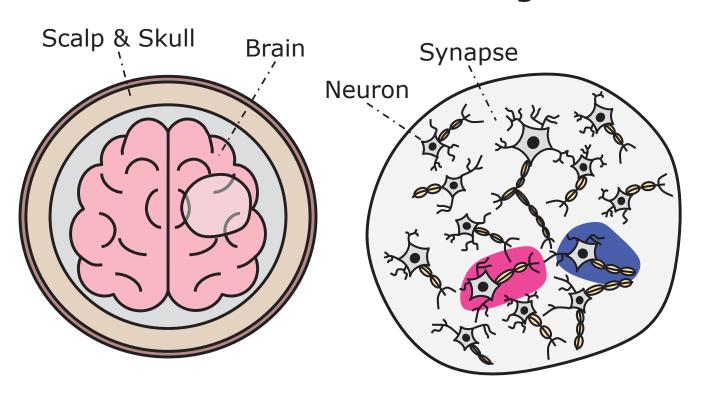
Research interests

- In Silico Brain Modeling Processor
 - A flexible digital circuit design [MICRO'19]
 - Event-driven brain simulation [ASPLOS'21]
 - Speculative brain simulation [HPCA'22]
- AI Algorithms & Hardware Performance Evaluations
 - SNN vs. ANN [Neurocomputing'21]
- Analog-Based Process-in-Memory Architecture
 - 3D NAND Flash-based PIM [MICRO'22]
- In Vivo BCI Signal Processor
 - Spike-driven BCI processor [MICRO'24]
 - Learning-enabled BCI processor [ISCA'25 (To Appear)]



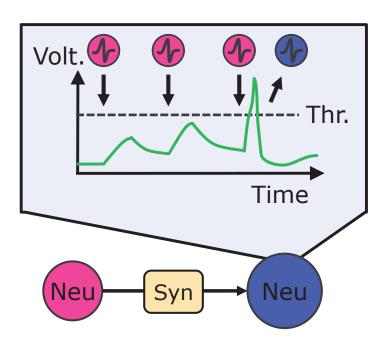
Overall structure of the brain

The brain consists of a biological neural network



Human Brain Structure

Biological Neural Network

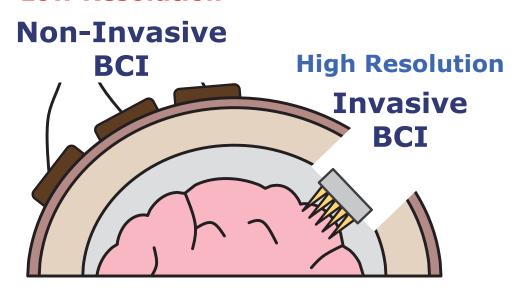


Internal Mechanism

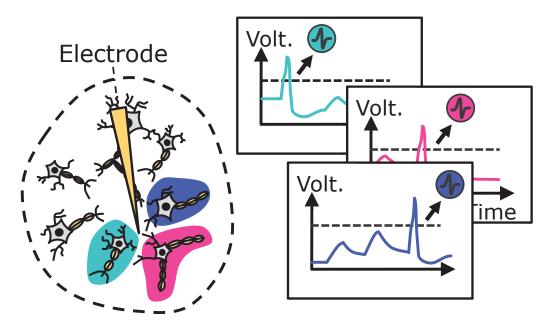
Brain-computer interfacing

 Brain-computer interfaces (BCIs) are electrophysiological devices that directly record and stimulate the neurons

Low Resolution



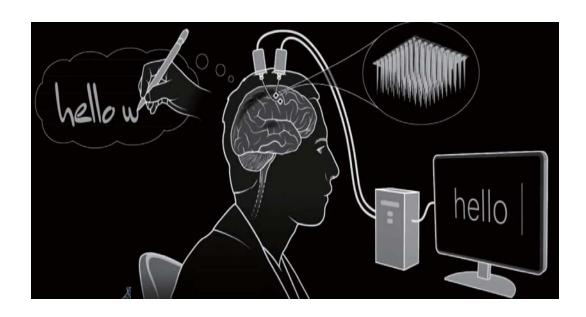
BCI Implementation Variants



Brain signals recorded using invasive BCIs

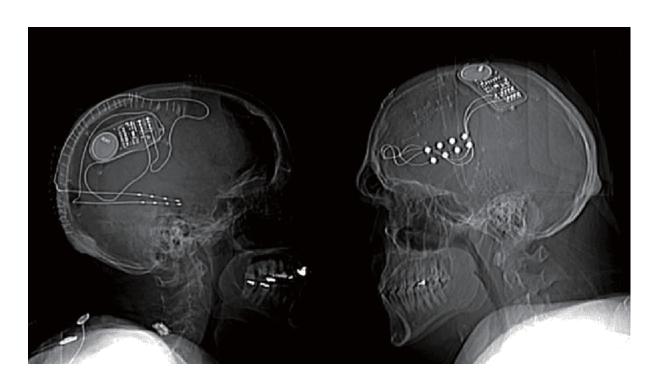
Use case #1: Neural prosthesis

- BCI signals reveal intended body movements by decoding signals at the motor cortex
 - Enables various applications including texting, game playing, robot arm movements



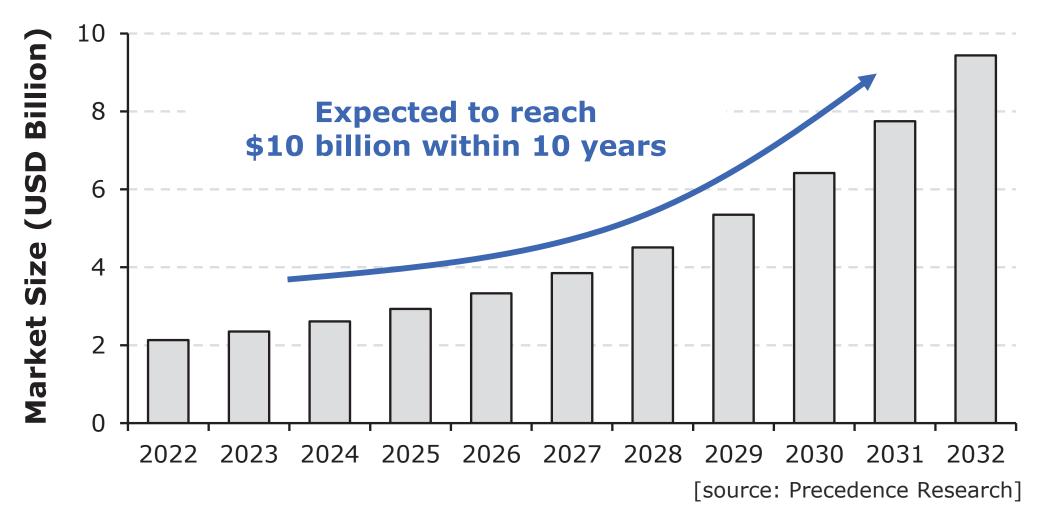
Use case #2: Seizure prevention

- BCI devices help cure neurological disorders by stimulating the brain at the onset
 - There are multiple FDA-approved medical devices (e.g., Neuropace, GBrain)



Increasing brain computer interface market size

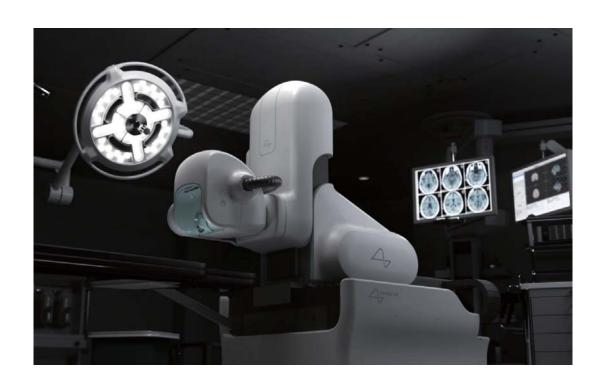
Increasing brain computer interface market size



The recent trends resolved various challenges in realizing practical BCIs

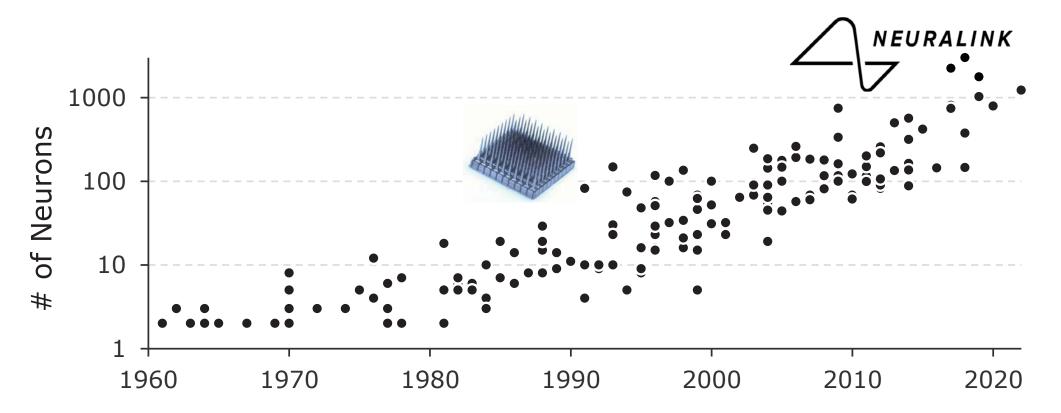
Reduced surgical risks w/ automated surgery

- Neuralink developed a robot to implant the BCI to the human brain (FDA-approved)
- Can be implanted with a small burr hole in the brain



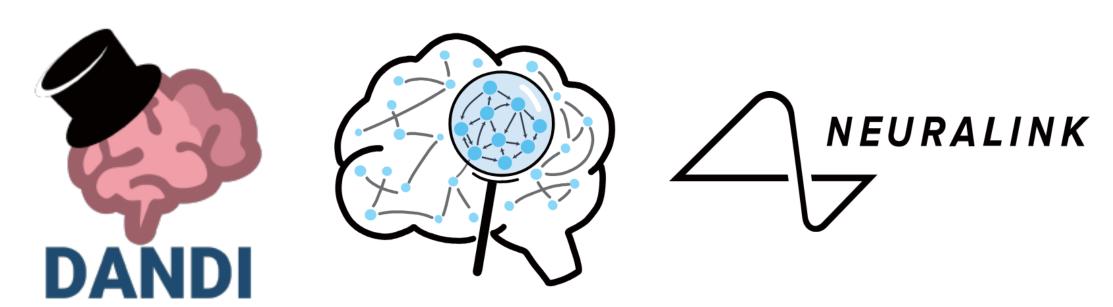
Scaling trends of the electrodes

- The number of recorded neurons is increasing at a rapid rate
 - The electrode scales 2x every 6 years (2x every 2 years recently)



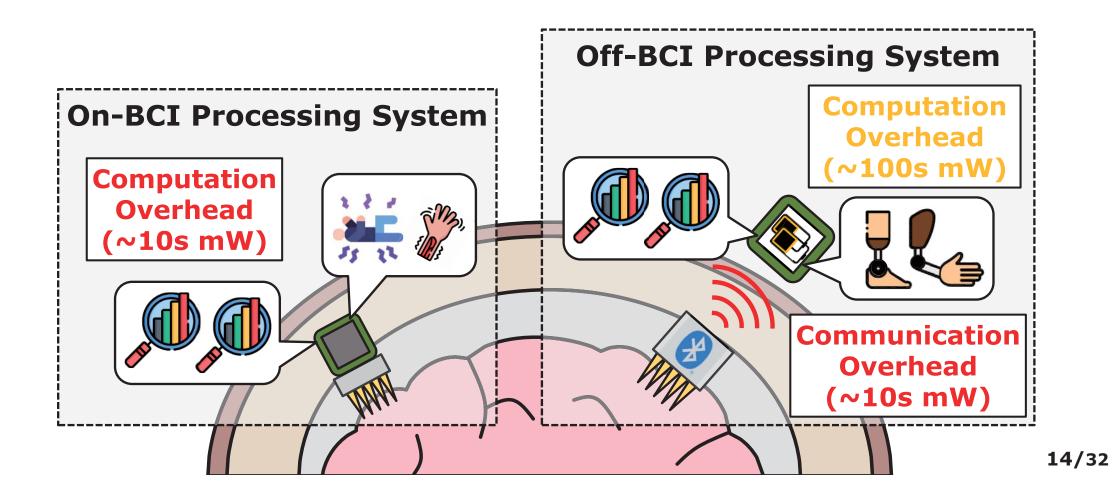
Opensource datasets

- Communities are releasing neurophysiological datasets as an open problem
- Neuralink are releasing part of the monkey datasets to the research communities



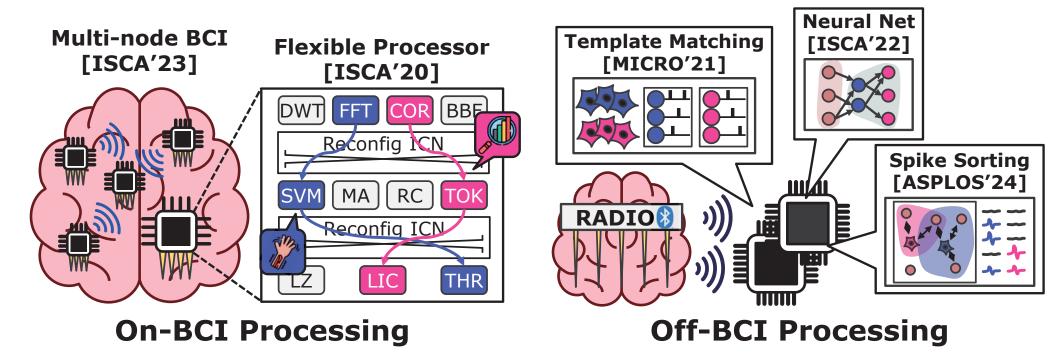
Right time to design a processing system for this new type of I/O

Architectural Perspective: Processing System for Brain-Computer Interfacing



Architectural Perspective: Processing System for Brain-Computer Interfacing

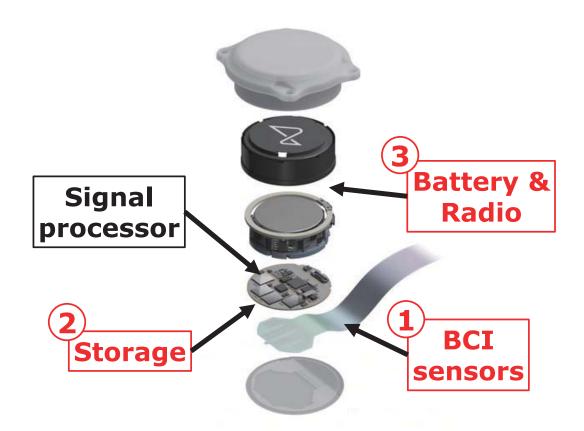
 There are a few architectural studies that focus on designing a dedicated processor for brain-computer interfacing



We need a full-stack design space exploration to find the best system!

Full-stack design space exploration

We should fully explore various design points including the (1)
 BCI signals, (2) storage, and (3) battery & radio



Research plans

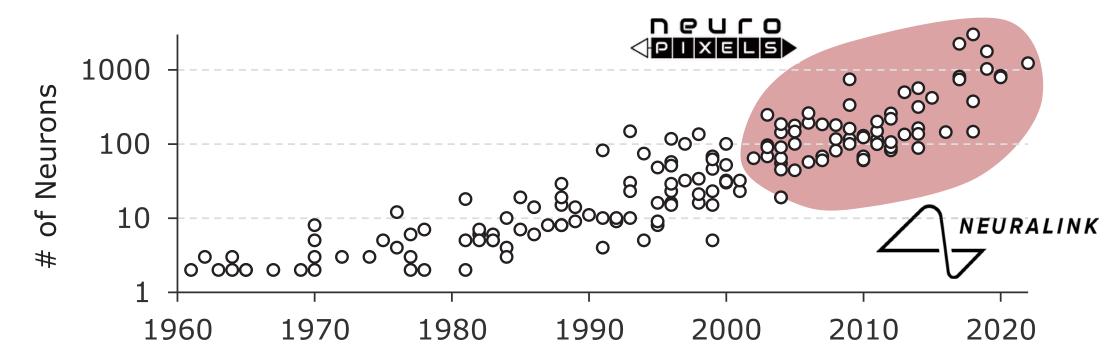
- Sensor: "Spike-driven architecture" for BCI processing [NeuroLobe - MICRO'24]
 - Rearchitect a neuromorphic-style processor for the purpose of supporting various BCI algorithms
- Storage: "Learning-enabled" NVM-assisted BCI system [MemBrain ISCA'25 (Accepted)]
 - Propose an NVM-driven acceleration system to handle BCI processing with learning support
- Battery & Radio: "Communication and power-aware" BCI scheduling system [Ongoing]
 - Design a low-cost scheduler and to handle battery and thermal imbalance among distributed BCI nodes

Research plans

- Sensor: "Spike-driven architecture" for BCI processing [NeuroLobe MICRO'24]
 - Rearchitect a neuromorphic-style processor for the purpose of supporting various BCI algorithms
- Storage: "Learning-enabled" NVM-assisted BCI system [MemBrain ISCA'25 (Accepted)]
 - Propose an NVM-driven acceleration system to handle BCI processing with learning support
- Battery & Radio: "Communication and power-aware" BCI scheduling system
 [Ongoing]
 - Design a low-cost scheduler and to handle battery and thermal imbalance among distributed BCI nodes

Challenge: Stevenson's scaling law

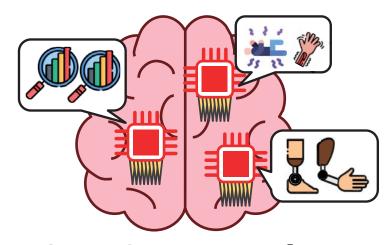
- Invasive BCIs scale up to record a larger number of neurons
- 1. **High communication overhead** to transfer the BCI signals ($> \sim 10$ s mW)
- 2. High computation overhead to process the signals



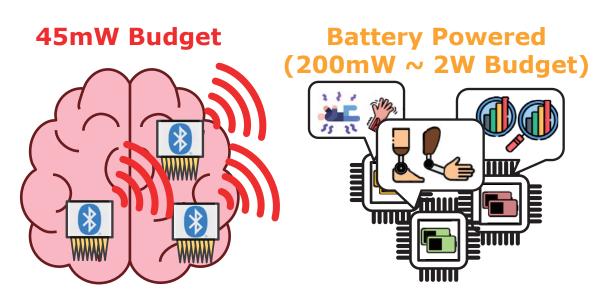
Challenge: Stevenson's scaling law

 The BCI processor violates the thermal budget as the number of electrodes scale (>200 Mbps)

45mW Budget



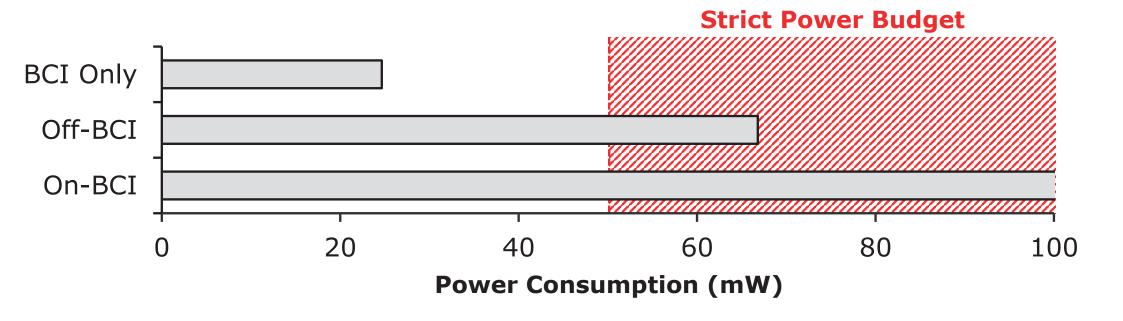
On-BCI Processing



Off-BCI Processing

Challenge: Stevenson's scaling law

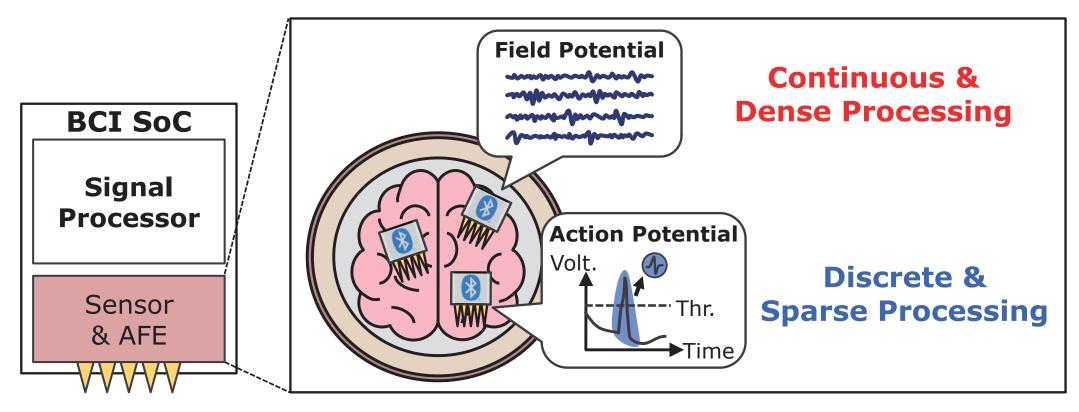
 The BCI processor violates the thermal budget as the number of electrodes scale (>200 Mbps)



The system should support scaled-up BCI within the power budget

Solution: Spike-driven processing system

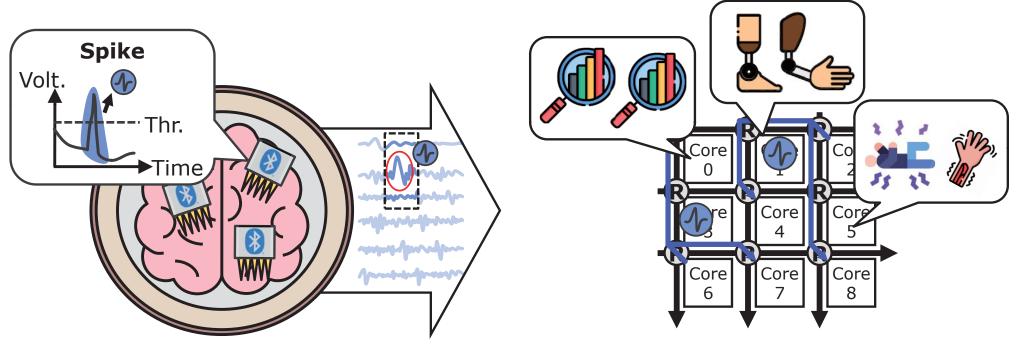
Utilize only the spiking nature of the BCI signals?



Reduce the computation & communication overhead using spikes

Solution: Spike-driven processing system

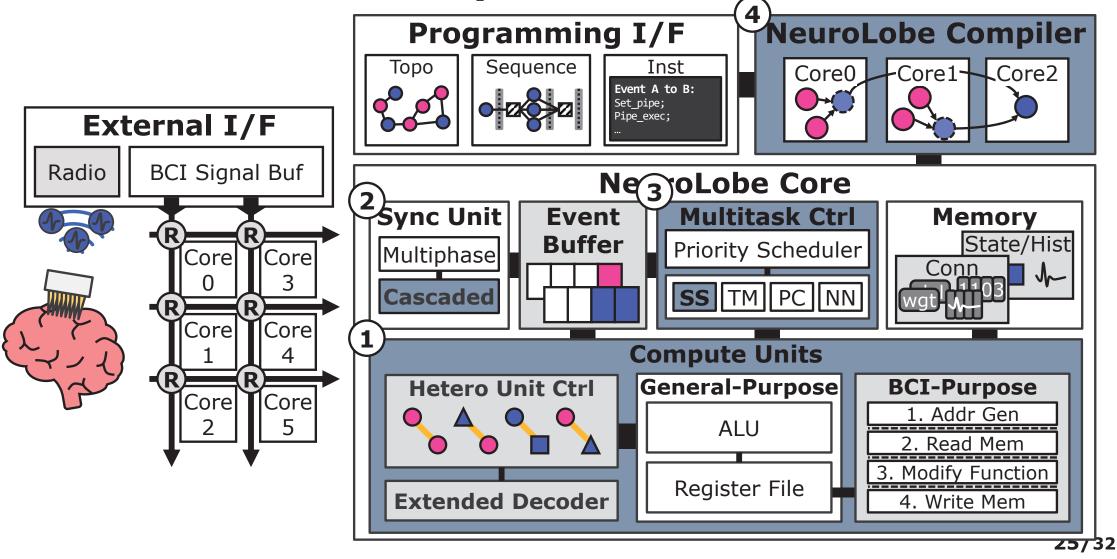
- We utilize the spiking nature of the BCI signals
- 1. Low communication overhead by transferring only spike signals
- 2. Efficient event-driven computation using a neuromorphic processor



BCI Implant Site

Sparse Signal Accelerator

Overview: NeuroLobe system

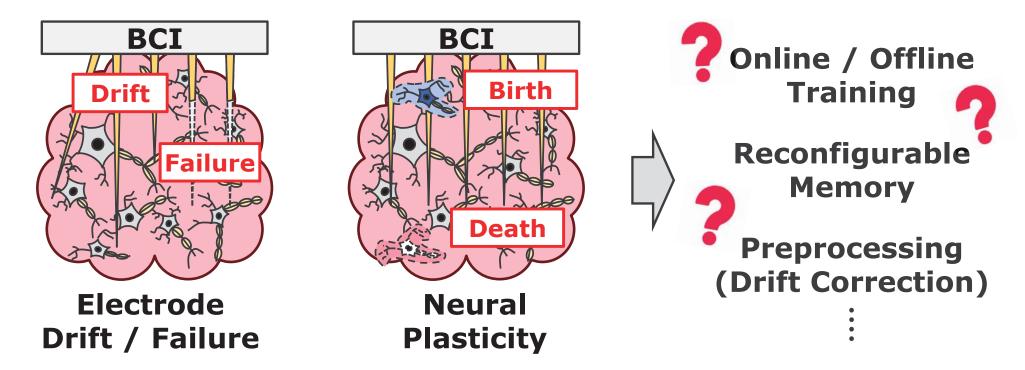


Research plans

- Sensor: "Spike-driven architecture" for BCI processing [NeuroLobe - MICRO'24]
 - Rearchitect a neuromorphic-style processor for the purpose of supporting various BCI algorithms
- Storage: "Learning-enabled" NVM-assisted BCI system [MemBrain ISCA'25 (Accepted)]
 - Propose an NVM-driven acceleration system to handle BCI processing with learning support
- Battery & Radio: "Communication and power-aware" BCI scheduling system
 [Ongoing]
 - Design a low-cost scheduler and to handle battery and thermal imbalance among distributed BCI nodes

Challenge: Adaptive Processing Support

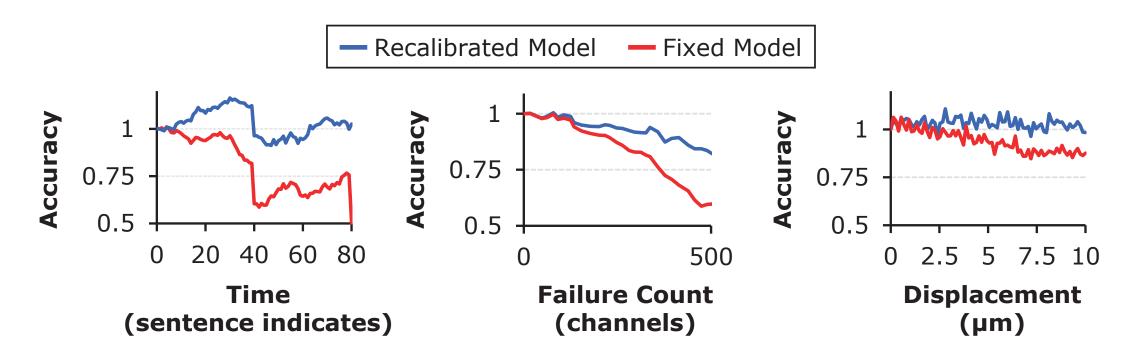
The BCI signals change continuously and abruptly in practical use cases



The processor should adapt to the continuously changing BCI signals

Challenge: Adaptive Processing Support

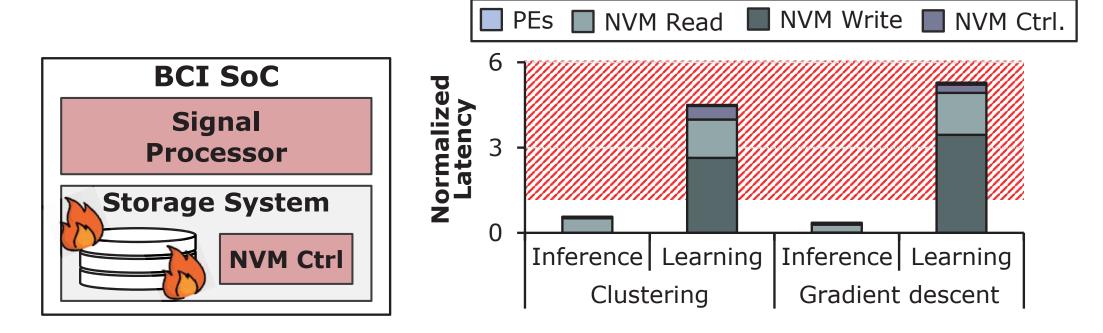
 The system should continuously update the model parameters to sustain sufficient accuracy over time



The system demands real-time recalibration to mitigate the accuracy drop

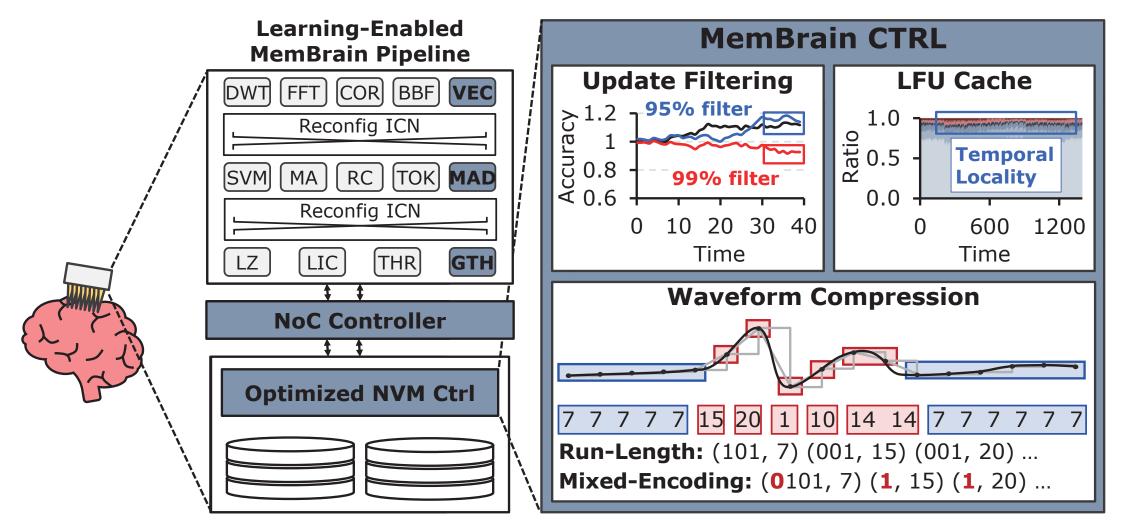
Challenge: Adaptive processing support

Continual learning incurs excessive write operations to the NVM devices



The NVM Write becomes the major performance overhead

Overview: MemBrain system



What's Next?

- Sensor: "Spike-driven architecture" for BCI processing [NeuroLobe - MICRO'24]
 - Rearchitect a neuromorphic-style processor for the purpose of supporting various BCI algorithms
- Storage: "Learning-enabled" NVM-assisted BCI system [MemBrain - ISCA'25 (Accepted)]
 - Propose an NVM-driven acceleration system to handle BCI processing with learning support
- **Battery & Radio: "Communication and power-aware" BCI** scheduling system

[Ongoing]

 Design a low-cost scheduler and to handle battery and thermal imbalance among distributed BCI nodes

Thank You! Any Questions?

Hunjun Lee

Computer Architecture (CArch) Lab. Department of Computer Science Hanyang University ITBT 405-2

E-mail: hunjunlee@hanyang.ac.kr