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Abstract

Traditional object detectors such as YOLO and Faster R-
CNN are limited to fixed category labels and struggle with
novel or unseen objects. Open-vocabulary models like CLIP
offer greater flexibility but often misinterpret user intent due
to a lack of commonsense reasoning.

To address these limitations, we propose a commonsense-
guided open-world object detection framework that inte-
grates YOLOv8 for fast region proposals, CLIP for visual-
text alignment, LLaVA for scene understanding, and GPT-
4 for trait-based reasoning. By pre-generating over 100 ob-
ject descriptions with GPT-4, our system embeds functional
and contextual knowledge that enables intent-aware detection
beyond static labels. Experiments on COCO, Open Images,
and a custom dataset of unseen objects demonstrate that
our approach significantly improves recall on novel queries
while maintaining high precision. These results highlight the
importance of combining vision-language models with com-
monsense reasoning for open-world detection.

For implementation details, https://github.com/ibrohimgets/
CommonsenseVision.git

I. INTRODUCTION

Object detectors like YOLO [1] are efficient but limited to
fixed classes, typically trained on datasets like COCO with
80 common categories (e.g., ”dog,” ”car,” ”chair”). However,
COCO omits many everyday items (e.g., pens, pencils, mark-
ers), causing YOLO to misclassify or miss such objects. This
closed-set limitation prevents YOLO from handling flexible,
commonsense-driven requests like “something to write with”
or “a food item,” where users describe objects by purpose
or attributes rather than explicit names. Recent advances
in vision-language models like CLIP [2], GPT-4V [3], and
LLaVA [4] offer a way to overcome this gap. These models
can match images to text descriptions (zero-shot) and reason
about objects using commonsense knowledge.

Motivated by this, we propose a commonsense-guided open-
world detection framework. Our system combines YOLOv8
for proposing regions, CLIP for matching user prompts, GPT-
4 for generating trait-based object descriptions, and LLaVA
for scene-level understanding. This enables flexible detection
— such as grounding “something to write with” to a pencil /
pen / marker — without requiring real-time LLM queries.

Our main contributions are:
• Commonsense-Guided Detection: A system combining

YOLOv8, CLIP, GPT-4 trait knowledge, and LLaVA to
detect objects based on user intent.

• Trait-Based Matching: A pre-generated GPT-4 knowl-
edge base enables fast, flexible matching without live
inference costs.

• Improved Flexibility and Accuracy: Our system outper-
forms CLIP-only and YOLO-only baselines, successfully
interpreting natural, commonsense queries.

In the following sections, we review related work, describe
our methodology (Figure 1), present experiments, and discuss
future directions.

II. RELATED WORK

A. Closed-Set Object Detection

Traditional object detectors like Faster R-CNN, SSD, and
YOLO are limited to fixed classes and struggle with recogniz-
ing unseen concepts [1]. For example, YOLOv8 performs well
on COCO’s 80 categories but fails to detect objects like ”pen”
or ”pencil” if not included in training. YOLO-World addresses
this by extending YOLOv8 with a text encoder and vision-
language pretraining [5], using a ”prompt-then-detect” strategy
with an offline vocabulary [6]. While it improves flexibility,
it still relies on keyword matching and lacks the contextual
reasoning needed to truly understand user intent.

B. Vision-Language Models for Open-Vocabulary Detection

Recent methods integrate vision-language models to move
beyond fixed labels. CLIP-based approaches such as ViLD,
RegionCLIP, and Detic use image-text embeddings for large-
vocabulary detection [2], with RegionCLIP enhancing region-
level alignment [7]. GLIP reformulates detection as a query-
based task using free-text prompts [8]. However, studies like
DeSCo [9] show that these models often miss subtle context
and over-rely on object names. Our method builds on these
works by using an LLM to enrich queries with commonsense
traits and leveraging LLaVA for deeper scene understanding
[4].

C. Large Language Models for Vision and Reasoning

Multimodal LLMs like GPT-4V and LLaVA show that
LLMs can interpret and reason about images by integrating
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Fig. 1. Overview of our commonsense-guided open-world detection frame-
work. Given an image and a user prompt (e.g., “I need something to
write with”), YOLOv8 proposes regions, and CLIP encodes visual features.
Sentence-BERT encodes the user’s intent and matches it to GPT-generated trait
descriptions (e.g., “pen = used for writing, contains ink”). LLaVA provides
scene context to support reasoning. The system integrates all components via
visual-semantic matching to identify the most relevant object.

visual features into a general reasoning engine [3], [4]. In
our framework, we use LLaVA to generate high-level scene
descriptions (captions and object lists) to support object de-
tection. LLMs have also been used to provide commonsense
priors for tasks like VQA and robotics [10]. We extend these
ideas by combining GPT-4’s offline-generated trait knowledge
with CLIP’s efficient online matching. Since querying GPT-
4V per image is costly and slow, we pre-compute traits offline
to enable fast and scalable open-world detection.

III. PROPOSED METHOD

Our system consists of four main components (Figure 1):
(1) YOLOv8 for region proposals, (2) CLIP for visual-textual
matching, (3) LLaVA for scene-level context, and (4) a GPT-
4-generated trait knowledge base for commonsense reasoning.

A. YOLOv8 Candidate Proposals

We use YOLOv8 (pre-trained on COCO) as a class-agnostic
region proposal network by selecting all high-confidence boxes
and ignoring predicted labels. This efficiently narrows the
search space to a few likely object regions, even when YOLO
misclassifies items like pencils, while maintaining real-time
speeds [1].

B. GPT-4 Trait Description Knowledge base

We curated over 100 object concepts, including all 80
COCO classes and various everyday items (e.g., writing tools,

utensils, devices). GPT-4 generated detailed traits for each
object, describing attributes, functions, and typical contexts
(e.g., a ”pen” is ”used for writing on paper,” ”contains
ink,” ”found on office desks”). These structured traits are
stored in a JSON knowledge base and enable commonsense-
driven matching without requiring real-time LLM queries.
At inference, user prompts are semantically matched to trait
descriptions. For flexible prompts like ”something to write
with,” both the prompt and traits are encoded using Sentence-
BERT, and the best match is selected via cosine similarity.
This offline strategy avoids the latency and cost of live GPT
queries.

C. CLIP Visual-Semantic Matching

CLIP matches YOLO proposals to the user’s described
object. The target trait description (e.g., ”made of plastic,
used for writing”) is encoded by CLIP’s text encoder (512-
dimensions). Each YOLO region is cropped and encoded using
CLIP’s image encoder. We compute cosine similarity between
the text and image embeddings:

si =
fimg(Bi) · ftext(query)
|fimg(Bi)||ftext(query)|

(1)

The region with the highest score above a threshold is
selected; otherwise, the system outputs ”object not found.”

When multiple trait sentences exist (e.g., synonyms), we
average the similarity scores:

straits
i =

1

T

∑
t∈T

fimg(Bi) · ftext(t)

|fimg(Bi)||ftext(t)|
(2)

This approach leverages CLIP’s zero-shot capability [2],
while reducing computation compared to naive sliding window
scanning.

D. Sentence-BERT Embedding for Flexible Queries

For flexible prompts, we use Sentence-BERT to encode the
user query (384-dimensional embeddings) and match it against
pre-generated trait embeddings. This allows the system to
understand queries even when the object name is not explicitly
stated.

E. LLaVA Scene Understanding

LLaVA provides global scene descriptions (e.g., listing
desks, whiteboards, stationery in a classroom) [4]. We use
LLaVA outputs to adjust the CLIP matching threshold dy-
namically:

If the queried object is mentioned, the threshold is lowered
to increase sensitivity.

If unrelated, the threshold is raised to reduce false positives.
This soft, rule-based adjustment improves robustness with-

out hard-coding object lists. More advanced LLM-driven in-
tegration is left for future work.
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IV. EXPERIMENTS

A. Dataset

For evaluation, we use three sources: (1) the COCO 2017
validation set for known class detection, (2) a curated subset
of images from the Open Images dataset, and (3) a custom
benchmark of 30 novel objects not included in YOLOv8’s
label space (e.g., pens, whiteboards, toothpaste, coffee cups).

Each image is paired with a natural language
query—ranging from explicit object names to high-level
intent-based prompts (e.g., ”I need something to write with”,
”a travel bag”). A detection is considered correct if the
predicted bounding box achieves an Intersection-over-Union
(IoU) ≥ 0.5 with the ground truth.

B. Our System

Our system combines YOLOv8 candidate proposals, CLIP-
based visual-semantic matching, GPT-4-generated trait de-
scriptions, and optional LLaVA scene context [4]. We also
perform ablation by removing trait expansion and scene con-
text to assess their impact.

C. Implementation Details

The settings are as follows:
• YOLOv8 (small variant): Confidence threshold set to

0.25.
• CLIP: ViT-B/32 backbone.
• Trait Matching: Sentence-BERT embeddings.
• Trait Generation: GPT-4 (March 2024 version).
• Scene Context: LLaVA (Vicuna-13B v1.5).

V. RESULTS

We evaluated our commonsense-guided detection system in
two stages:

• (1) Standard Class Detection (Known Classes)
• (2) Flexible Commonsense Prompt Detection
Table I shows precision and recall for known COCO classes,

while Table II evaluates detection on 30 novel objects outside
YOLOv8’s label set. Table III further assesses the system’s
ability to interpret flexible, intent-driven prompts using com-
monsense reasoning.

TABLE I
DETECTION PERFORMANCE FOR KNOWN CLASSES (E.G., ’CAT’, ’DOG’,

’CAR’) AT IOU ≥ 0.5

Method Precision (P) Recall (R)
YOLO-only (COCO classes: cat, dog, car) 0.91 0.52
CLIP-only (sliding window) 0.45 0.78
Ours 0.84 0.82

YOLO-only performs well on known classes but fails on un-
seen objects due to its fixed vocabulary. CLIP-only generalizes
better but lacks precise localization. Our system combines
YOLO, CLIP, and GPT-based reasoning to achieve strong
performance on both known and novel objects.

TABLE II
DETECTION PERFORMANCE ON NOVEL COMMONSENSE BENCHMARK (30

UNSEEN OBJECTS)

Method Precision (Novel) Recall (Novel)
YOLO-only (COCO trained) 0.40 0.20
CLIP-only (sliding window) 0.52 0.65
Ours (Commonsense-guided) 0.74 0.71

These results reveal the limits of traditional detectors on un-
seen objects and highlight the effectiveness of commonsense-
guided reasoning for real-world intent. Our benchmark offers
a strong foundation for future open-world detection research.

TABLE III
PERFORMANCE ON COMMONSENSE PROMPTS (FLEXIBLE INTENT

UNDERSTANDING)

Prompt Method Result
I need a travel bag YOLO-only Failed
I need a travel bag CLIP-only Partial match
I need a travel bag Ours Correct (suitcase detected)
A furry animal YOLO-only Failed
A furry animal CLIP-only Partial match
A furry animal Ours Correct (cat detected)

Table III illustrates how the system interprets flexible
prompts using commonsense reasoning—such as detecting
a cat from ”a furry animal” or a suitcase from ”a travel
bag”—without being explicitly told the object name.

VI. CONCLUSION

We proposed an open-world object detection system that
combines YOLOv8, CLIP, LLaVA, and GPT-4 to integrate
visual grounding with commonsense reasoning. By leveraging
pre-generated trait knowledge, our method bridges user intent
and perception, significantly improving recall on novel objects
while maintaining high precision. Future work includes scaling
trait coverage, enabling dynamic LLM updates, and optimizing
scene understanding with lighter models.
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