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Abstract 

Application processors (APs) are increasingly used in mixed-criticality systems (MCS), where components 
with varying safety and real-time requirements share a platform. In MCS like automotive systems, real-time 
communication is essential for safety. While APs often handle non-critical tasks, they still rely on real-time data 
and peripherals. However, their multi-processing nature and often external network connectivity expose them to 
attacks, which can compromise real-time channels or make the APs a source of malicious data. This paper explores 
the possibility and challenges of securing real-time communication peripheral access on application processors in 
MCS environments. 

 
1. Introduction 

Application processors (APs) are increasingly integrated 
into distributed mixed-critical systems (MCS), where 
components with carrying safety, real-time, and performance 
requirements coexists on hardware platform connected by 
networks. In MCS, particularly in domains such as 
automotive, real-time communication is essential to uphold 
safety guarantees. Although APs are not typically responsible 
for hard real-time tasks, they often process workloads that 
depend on real-time data, necessitating access to real-time 
peripherals. However, given their multi-processing nature, 
concurrent execution of diverse applications, and frequent 
exposure to external networks, APs present a larger attack 
surface. This exposure raises the risk of compromised or 
manipulated data entering the system through real-time 
channels, or the processor itself becoming a source of 
malicious activity. As such, securing access to real-time 
communication peripherals as the AP end is critical.  

A typical approach to securing real-time communication is 
the use of cryptography. However, strong algorithms like 
asymmetric cryptography are often impractical in MCS, as 
many nodes lack sufficient processing power. Lighter 
alternatives, such as symmetric cryptography, may not meet 
the required security standards for complex systems. To 

address this, hardware security modules (HSMs) or minimal 
cryptographic engines (HSE, SHE) have been proposed for 
resource-constrained nodes. While application processors can 
handle strong cryptographic algorithms, they face challenges 
in secure key storage, access, and management. One solution 
is to integrate HSM-like security engines on APs, but this 
increases implementation costs and underutilizes the APs' 
capabilities. Fortunately, modern APs now support Trusted 
Execution Environments (TEEs), enabling trusted execution 
without the need for additional hardware. 

In this paper, we explore the use of Trusted Execution 
Environments (TEEs) on application processors (APs) to 
secure real-time communication in distributed mixed-
criticality systems (MCS). Assuming cryptographic 
mechanisms are employed system-wide, with resource-
constrained nodes supported by dedicated cryptographic 
engines, we propose offloading cryptographic operations for 
real-time communication to a trusted environment on the AP. 
We outline key requirements and challenges for establishing 
a secure real-time communication model on APs within MCS. 
Our solution is based on ARM TrustZone as the TEE, 
implemented on a Cortex-A53 processor. While the model 
focuses on the CAN protocol, it is extensible to other 
interfaces such as SPI for short-range communication and 
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LIN for lower-criticality tasks. 
 

2. Background 

2.1 Mixed-Criticality Systems 
Mixed-Criticality Systems (MCS) are computing 

platforms that execute tasks or applications with different 
levels of criticality on shared hardware or interconnected 
network nodes, as in cyber-physical systems (CPS). They 
integrate components with varying safety, real-time, and 
performance requirements. In this paper, we focus on 
automotive systems, which exemplify MCS. These systems 
typically include brake control systems that are highly safety-
critical and require strict real-time operation, infotainment 
systems that are non-critical and computation-heavy but not 
time-sensitive, and advanced driver assistance systems 
(ADAS) that rely on sensor data and algorithms for safe 
operation and have moderately flexible timing demands. 
Automotive MCS are powered by heterogeneous computing, 
combining real-time processors for deterministic control 
tasks like braking and engine management, application 
processors such as ARM Cortex-A for high-level non-real-
time tasks, GPUs for graphics and ADAS workloads, and a 
variety of sensors for real-time data collection. These 
components communicate over different in-vehicle networks, 
including real-time protocols like CAN for low-latency 
communication and high-throughput Ethernet for large data 
transfers. While real-time protocols like CAN are designed 
for timeliness, they often lack robust security features. 
Application processors, which are frequently connected to 
both real-time networks and external interfaces such as 
wireless or internet connections, pose a significant attack 
surface. If compromised, an AP can provide a path for 
attackers to access critical vehicle systems, potentially 
jeopardizing the entire platform’s safety. Therefore, securing 
AP communication on real-time networks is essential to 
preserving both the safety and security of automotive MCS. 

 
2.2 Trusted Execution Environments (TEEs): 
Trusted Execution Environments (TEEs) enable the 

execution of programs or code within a secure, isolated 
context known as an enclave. Depending on the architecture, 
the enclave may have exclusive access to a dedicated 
memory region, which can be restricted either to the code 
running within it or, in some designs, to a group of trusted 
applications. TEEs also support binding peripheral devices to 
the secure world, ensuring that only trusted code can interact 
with them. On ARM systems, the most widely used TEE 
implementation is TrustZone. TrustZone divides the system 
into two worlds: the secure world and the normal world. The 
secure world has access to isolated memory that the normal 
world cannot reach, enforced by the TrustZone Address 
Space Controller (TZASC). Peripheral access can also be 
restricted to the secure world using the TrustZone Peripheral 

Controller (TZPC). The secure world and normal world 
communication via shared memory and secure monitor calls 
(SMC). Secure monitor calls allow the normal world to hand-
over execution to the secure world, a process that results in 
saving the execution context to which to resume when the 
call ends.  

2.3 Realtime Communication on MCS: 
MCS, especially distributed ones such as automotive, 

which may contain multiple computing nodes are usually 
connected over networks. For automotives, the in-vehicle 
network (IVN) connects several computing nodes called 
electronic control units (ECUs). Among ECUs are 
microcontrollers for real-time computing connected over 
networks such as CAN for fast real-time data transmission. A 
few general-purpose computing nodes such as the 
infotainment node may also be connected to this network to 
received and report real-time data of the vehicle or may send 
messages to ECUs connected to the IVN to control the 
vehicle. Unfortunately, such general-purpose computing 
nodes are usually also connected to external networks, 
making them easy targets for remote attacks, and as such 
remote attackers can leverage them to inject real-time 
messages into the IVN and control the vehicle.  
 
3. Securing Realtime Communication on APs with 

TrustZone 

 
Figure 1: Securing peripheral access using TrustZone-A 

As earlier explained, securing real-time communications 
especially from APs possibly connected to external networks 
is crucial to maintaining safety and security of the whole 
system. In this paper, we assume APs based on ARM Cortex-
A processors with TrustZone-A.  

3.1 Requirements: 
By secure communication, we envision a developer 

wishing to monitor all real-time communication on the APs. 
This means monitoring all messages from the AP to the IVN 
and messages from the IVN to the AP. As such, the system 
requires the following: 
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• R1: A defined classification of legal and illegal 
communication. This may be the transmission 
rate, particular message types (specific CAN IDs, 
SPI channels, etc.) or a more contextual 
thoroughly defined firewall combining both. 

• R2: A communication verifier and authentication 
mechanism. This mechanism verifies and 
authenticates in- and out-bound transmissions, 
disallowing any illegal ones. This can be a piece 
of software coupled with a file listing allowed in- 
and out-bound CAN IDs, and a method for 
verifying the authenticity of such a list, and 
facilitation of its persistent storage. 

• R3: Communication peripheral access control. 
Communication peripherals are responsible for 
transmitting data between the AP and the network 
bus. For example, a CAN module connects an AP 
to the CAN bus network. Any software that can 
access the module has permission to transmit 
CAN frames and read received CAN frames on 
the module. For secure communication, access to 
such a peripheral must be limited only to trusted 
software, in this case, the verifier and possibly 
the authentication mechanism. 

• R4: Minimal TCB: The trusted computing base, 
such as the verifier and authentication 
mechanism must be minimal to avoid bloating 
the secure world, which may increase the attack 
surface. 

• R5: A communication medium linking the normal 
world to the peripheral. Since access to the 
peripheral is controlled, a medium such as shared 
memory between secure world and normal world 
may be required to pass on transmission 
messages from normal world to secure world and 
received messages from secure world to normal 
world. 
 

3.2 Secure Communication: 
Assuming the developer has a list of legal CAN IDs 

allowed for transmission, we propose saving such a list in a 
file on an available secure non-volatile memory (secure 
NVM). [6] suggests using fTPM with OPTEE’s secure non-
volatile storage mechanism to facilitate secure NVM using 
TrustZone-A. Other works such as [3,4] suggest secure 
storage using a TPM, but that requires additional hardware. 
In this paper, we anticipate the cost of APs should further be 
justified by handling such requirement as secure NVM using 
the available NVM - such as using the fTPM which is open-
sourced.  

Next, the CAN module can be assigned to the secure 
world using TZPC, ensuring its access is only from secure 
world. If the CAN module also has memory-mapped 
registers, they are mapped to the secure world using TZASC, 
further enhancing the access control to the module. Any 
interrupts raised by the peripheral must be handled in the 
secure world (which is obvious since the peripheral is 
assigned to the secure world).  

3.2.1 Transmission: 
During transmission, peripheral drivers from the normal 

world originally access the peripheral directly, for example to 

write to transmission buffers of the peripheral device. In this 
case, they write to the communication medium (R4), and 
then make an SMC to signal the secure world about the 
availability of data to transmit. 

Handling the SMC call at the secure world end requires 
invoking the verifier to check the message to be transmitted 
and either authorized its transmission by writing it to the 
transmission buffer and making any necessary register 
settings or denying it if deemed illegal and simply dropping 
it. The secure world may return a result to the normal world 
on whether the message was transmitted or dropped (this is a 
developer’s choice). For most peripherals, a successful 
transmission will raise an interrupt, which allows the secure 
world to inform the normal world, allowing it to send more 
messages if available. 

3.2.2 Reception: 
When a message arrives at the peripheral, most 

peripherals will raise a reception interrupt. Since the 
peripheral is configured to the secure world, execution will 
transition to the reception handler in the secure world, where 
the verifier or authenticator can be invoked to secure the AP 
from malicious messages if need be. The message can then 
be written to the shared memory. At this point, there is no 
way the normal world is aware of this new message. We 
propose using a software generated interrupt (SGI) raised by 
secure world targeting the normal world. 

Figure 1. summarizes the basic framework described 
above. 
4. Challenges: 

 
Figure 2: SMC calls required to handle transmission 

C1. Performance overhead:  
The biggest challenge is balancing between performance 

requirements of real-time communications and the runtime 
performance cost of using TrustZone-A. The most obvious 
source of performance overhead is the number of world 
switches needed both to transmit or receive a single message. 
Under TrustZone-A, an SMC call requires saving contexts 
and sometimes flushing caches for security reasons. A single 
SMC call requires hundreds and sometimes thousands of 
CPU cycles. For real-time communication, the AP may miss 
newly available messages. For some peripherals, such as in 
CAN, a message may be dropped if another one arrives while 
the reception buffer is still uncleared. This situation is 
referred to as a buffer overrun. When multiple buffer 
overruns occur, the AP may miss critical information, say 
from sensors, or fail to handle critical situations. For example, 
in our experiments, when a frame burst occurs, about 7% of 
the CAN messages are lost due to this performance 
slowdown. For transmission, since transmitting a single 
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message is costly, the overall throughput is greatly affected. 
Our experiments show that attempting to transmit multiple 
messages at tight intervals results in a 33% throughput 
degradation. Figure 2. shows the world switches that may be 
required to handle a simple transmission interrupt and before 
sending another message. 

Therefore, the developer must devise a smarter way to 
improve both transmission throughput and reception speed to 
avoid or minimize frame loss. [5] suggests reserving a whole 
CPU core and running a real-time OS (RTOS) on it to handle 
communication requests from other AP CPU cores. Using 
TZPC, the communication peripherals are assigned to the 
RTOS CPU core, such that the other CPUs cannot access it. 
The challenge with this design is that it may degrade the 
overall AP performance, especially if real-time 
communication is only required at particular periods, not all 
the time during execution. A workaround may involve 
scheduling the RTOS dynamically on one of the CPU cores 
as an optimization for when repeated transmission is needed 
or a reception burst occurs. In this design, however, the 
developer is further tasked with designing and defining the 
conditions under which the RTOS can be scheduled or 
paused. Another alternative is using batched transmission as 
done by [1] and [2]. However, it is important to note that not 
all peripherals support batched I/O. 

 
C2: Message Verification: 
In automotive systems, messages can be authenticated 

using message authentication codes (MAC). However, most 
existing research proposes authenticating messages at the 
computing node level. This means that a message can only be 
authenticated as originating or intended to be received by a 
particular AP. A more realistic solution must enforce finer-
grained authentication, verifying and authenticating 
transmission messages based on the application intending to 
send the message. This way, it is easy to know block 
malicious applications on the AP from sending unauthorized 
messages. More challenging, however, is the fact that most 
real-time communication protocols such as CAN or SPI do 
not include sender application information in the message, 
requiring the developer to devise a means to identify the 
normal world sender application at the verifier level at the 
secure world end. 

 
5. Conclusion 

In this paper, we present a basic framework for securing 
real-time communication on application processors in 
distributed mixed criticality systems, taking automotive 
systems as an example, using TrustZone. For our reader, we 
also outline challenges that may be encountered in realizing 
this framework in a real-world system. Our framework relies 
on TrustZone which is readily available on commonly used 
ARM Cortex-A processors and does not require additional 
hardware such as TPMs. For future works, we plan on 
devising solutions to the outlined challenges to reduce the 
transmission throughput overhead and reception frame loss. 
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