ASK 2025 st&2tE 3| =27 (32 1

=)

AF A3 §4S 883 o=

N7 B A

e 1, 4

Al AV AR

AEdeal A7)

Aol T=AX A

o Bl

2]
&

3

AEE

=
T

A 2

1l O

uH

2 o
) oot

y
=]
w
A4

[
of

El

=]
T

kayondo@snu.ac.kr, jmchoi@sor.snu..ac.kr, ypack@snu.ac.kr

Secure Realtime Communication Peripheral Access on
Application Processors with TrustZone

Martin Kayondo', Jin-Myung Choi?, Yun-Heung Pack!*
"Dept. of Electrical and Computer Engineering, Seoul National University

’Inter-University Semiconductor Research

Center (ISRC), Seoul National University

Abstract

Application processors (APs) are increasingly used

in mixed-criticality systems (MCS), where components

with varying safety and real-time requirements share a platform. In MCS like automotive systems, real-time
communication is essential for safety. While APs often handle non-critical tasks, they still rely on real-time data
and peripherals. However, their multi-processing nature and often external network connectivity expose them to
attacks, which can compromise real-time channels or make the APs a source of malicious data. This paper explores
the possibility and challenges of securing real-time communication peripheral access on application processors in

MCS environments.

1. Introduction

Application processors (APs) are increasingly integrated
into distributed mixed-critical systems (MCS), where
components with carrying safety, real-time, and performance
requirements coexists on hardware platform connected by
networks. In MCS, particularly in domains such as
automotive, real-time communication is essential to uphold
safety guarantees. Although APs are not typically responsible
for hard real-time tasks, they often process workloads that
depend on real-time data, necessitating access to real-time
peripherals. However, given their multi-processing nature,
concurrent execution of diverse applications, and frequent
exposure to external networks, APs present a larger attack
surface. This exposure raises the risk of compromised or
manipulated data entering the system through real-time
channels, or the processor itself becoming a source of
malicious activity. As such, securing access to real-time
communication peripherals as the AP end is critical.

A typical approach to securing real-time communication is
the use of cryptography. However, strong algorithms like
asymmetric cryptography are often impractical in MCS, as
many nodes lack sufficient processing power. Lighter
alternatives, such as symmetric cryptography, may not meet
the required security standards for complex systems. To

address this, hardware security modules (HSMs) or minimal
cryptographic engines (HSE, SHE) have been proposed for
resource-constrained nodes. While application processors can
handle strong cryptographic algorithms, they face challenges
in secure key storage, access, and management. One solution
is to integrate HSM-like security engines on APs, but this
increases implementation costs and underutilizes the APs'
capabilities. Fortunately, modern APs now support Trusted
Execution Environments (TEEs), enabling trusted execution
without the need for additional hardware.

In this paper, we explore the use of Trusted Execution
Environments (TEEs) on application processors (APs) to
secure real-time communication in distributed mixed-
criticality systems (MCS). Assuming cryptographic
mechanisms are employed system-wide, with resource-
constrained nodes supported by dedicated cryptographic
engines, we propose offloading cryptographic operations for
real-time communication to a trusted environment on the AP.
We outline key requirements and challenges for establishing
a secure real-time communication model on APs within MCS.
Our solution is based on ARM TrustZone as the TEE,
implemented on a Cortex-A53 processor. While the model
focuses on the CAN protocol, it is extensible to other
interfaces such as SPI for short-range communication and

- 274 -

mailto:jmchoi@sor.snu..ac.kr

ASK 2025 st 5| =27 (323 15)

LIN for lower-criticality tasks.

2. Background

2.1 Mixed-Criticality Systems

Mixed-Criticality =~ Systems (MCS) are computing
platforms that execute tasks or applications with different
levels of criticality on shared hardware or interconnected
network nodes, as in cyber-physical systems (CPS). They
integrate components with varying safety, real-time, and
performance requirements. In this paper, we focus on
automotive systems, which exemplify MCS. These systems
typically include brake control systems that are highly safety-
critical and require strict real-time operation, infotainment
systems that are non-critical and computation-heavy but not
time-sensitive, and advanced driver assistance systems
(ADAS) that rely on sensor data and algorithms for safe
operation and have moderately flexible timing demands.
Automotive MCS are powered by heterogeneous computing,
combining real-time processors for deterministic control
tasks like braking and engine management, application
processors such as ARM Cortex-A for high-level non-real-
time tasks, GPUs for graphics and ADAS workloads, and a
variety of sensors for real-time data collection. These
components communicate over different in-vehicle networks,
including real-time protocols like CAN for low-latency
communication and high-throughput Ethernet for large data
transfers. While real-time protocols like CAN are designed
for timeliness, they often lack robust security features.
Application processors, which are frequently connected to
both real-time networks and external interfaces such as
wireless or internet connections, pose a significant attack
surface. If compromised, an AP can provide a path for
attackers to access critical vehicle systems, potentially
jeopardizing the entire platform’s safety. Therefore, securing
AP communication on real-time networks is essential to
preserving both the safety and security of automotive MCS.

2.2 Trusted Execution Environments (TEEs):

Trusted Execution Environments (TEEs) enable the
execution of programs or code within a secure, isolated
context known as an enclave. Depending on the architecture,
the enclave may have exclusive access to a dedicated
memory region, which can be restricted either to the code
running within it or, in some designs, to a group of trusted
applications. TEEs also support binding peripheral devices to
the secure world, ensuring that only trusted code can interact
with them. On ARM systems, the most widely used TEE
implementation is TrustZone. TrustZone divides the system
into two worlds: the secure world and the normal world. The
secure world has access to isolated memory that the normal
world cannot reach, enforced by the TrustZone Address
Space Controller (TZASC). Peripheral access can also be
restricted to the secure world using the TrustZone Peripheral

Controller (TZPC). The secure world and normal world
communication via shared memory and secure monitor calls
(SMC). Secure monitor calls allow the normal world to hand-
over execution to the secure world, a process that results in
saving the execution context to which to resume when the
call ends.

2.3 Realtime Communication on MCS:

MCS, especially distributed ones such as automotive,
which may contain multiple computing nodes are usually
connected over networks. For automotives, the in-vehicle
network (IVN) connects several computing nodes called
electronic control (ECUs). Among ECUs are
microcontrollers for real-time computing connected over
networks such as CAN for fast real-time data transmission. A
few general-purpose computing nodes such as the
infotainment node may also be connected to this network to
received and report real-time data of the vehicle or may send
messages to ECUs connected to the IVN to control the
vehicle. Unfortunately, such general-purpose computing
nodes are usually also connected to external networks,
making them easy targets for remote attacks, and as such
remote attackers can leverage them to inject real-time
messages into the IVN and control the vehicle.

units

3. Securing Realtime Communication on APs with

TrustZone
User App I [User App | l User App
J
(A\
Network Stack
NSW
NW-0S
N\ J
()
Network Stack
J
Verifier
§ SW-0S)
\

| Network Device |

Figure 1: Securing peripheral access using TrustZone-A

As earlier explained, securing real-time communications
especially from APs possibly connected to external networks
is crucial to maintaining safety and security of the whole
system. In this paper, we assume APs based on ARM Cortex-
A processors with TrustZone-A.

3.1 Requirements:

By secure communication, we envision a developer
wishing to monitor all real-time communication on the APs.
This means monitoring all messages from the AP to the IVN
and messages from the IVN to the AP. As such, the system
requires the following:

- 275 -

ASK 2025 st 5| =27 (323 15)

e RI: A defined classification of legal and illegal
communication. This may be the transmission
rate, particular message types (specific CAN IDs,
SPI channels, etc.) or a more -contextual
thoroughly defined firewall combining both.

e R2: A communication verifier and authentication
mechanism. This mechanism verifies and
authenticates in- and out-bound transmissions,
disallowing any illegal ones. This can be a piece
of software coupled with a file listing allowed in-
and out-bound CAN IDs, and a method for
verifying the authenticity of such a list, and
facilitation of its persistent storage.

e R3: Communication peripheral access control.
Communication peripherals are responsible for
transmitting data between the AP and the network
bus. For example, a CAN module connects an AP
to the CAN bus network. Any software that can
access the module has permission to transmit
CAN frames and read received CAN frames on
the module. For secure communication, access to
such a peripheral must be limited only to trusted
software, in this case, the verifier and possibly
the authentication mechanism.

e R4: Minimal TCB: The trusted computing base,
such as the wverifier and authentication
mechanism must be minimal to avoid bloating
the secure world, which may increase the attack
surface.

¢ R5: A communication medium linking the normal
world to the peripheral. Since access to the
peripheral is controlled, a medium such as shared
memory between secure world and normal world
may be required to pass on transmission
messages from normal world to secure world and
received messages from secure world to normal
world.

3.2 Secure Communication:

Assuming the developer has a list of legal CAN IDs
allowed for transmission, we propose saving such a list in a
file on an available secure non-volatile memory (secure
NVM). [6] suggests using fTPM with OPTEE’s secure non-
volatile storage mechanism to facilitate secure NVM using
TrustZone-A. Other works such as [3,4] suggest secure
storage using a TPM, but that requires additional hardware.
In this paper, we anticipate the cost of APs should further be
justified by handling such requirement as secure NVM using
the available NVM - such as using the fTPM which is open-
sourced.

Next, the CAN module can be assigned to the secure
world using TZPC, ensuring its access is only from secure
world. If the CAN module also has memory-mapped
registers, they are mapped to the secure world using TZASC,
further enhancing the access control to the module. Any
interrupts raised by the peripheral must be handled in the
secure world (which is obvious since the peripheral is
assigned to the secure world).

3.2.1 Transmission:

During transmission, peripheral drivers from the normal
world originally access the peripheral directly, for example to

write to transmission buffers of the peripheral device. In this
case, they write to the communication medium (R4), and
then make an SMC to signal the secure world about the
availability of data to transmit.

Handling the SMC call at the secure world end requires
invoking the verifier to check the message to be transmitted
and either authorized its transmission by writing it to the
transmission buffer and making any necessary register
settings or denying it if deemed illegal and simply dropping
it. The secure world may return a result to the normal world
on whether the message was transmitted or dropped (this is a
developer’s choice). For most peripherals, a successful
transmission will raise an interrupt, which allows the secure
world to inform the normal world, allowing it to send more
messages if available.

3.2.2 Reception:

When a message arrives at the peripheral, most
peripherals will raise a reception interrupt. Since the
peripheral is configured to the secure world, execution will
transition to the reception handler in the secure world, where
the verifier or authenticator can be invoked to secure the AP
from malicious messages if need be. The message can then
be written to the shared memory. At this point, there is no
way the normal world is aware of this new message. We
propose using a software generated interrupt (SGI) raised by
secure world targeting the normal world.

Figure 1. summarizes the basic framework described
above.

4. Challenges:

Handle Tx IRQ

fetch—
g, nextie

nandieS.~
Ty e

X next Frame

™ ha"‘d\ed

NW SW

Figure 2: SMC calls required to handle transmission

C1. Performance overhead:

The biggest challenge is balancing between performance
requirements of real-time communications and the runtime
performance cost of using TrustZone-A. The most obvious
source of performance overhead is the number of world
switches needed both to transmit or receive a single message.
Under TrustZone-A, an SMC call requires saving contexts
and sometimes flushing caches for security reasons. A single
SMC call requires hundreds and sometimes thousands of
CPU cycles. For real-time communication, the AP may miss
newly available messages. For some peripherals, such as in
CAN, a message may be dropped if another one arrives while
the reception buffer is still uncleared. This situation is
referred to as a buffer overrun. When multiple buffer
overruns occur, the AP may miss critical information, say
from sensors, or fail to handle critical situations. For example,
in our experiments, when a frame burst occurs, about 7% of
the CAN messages are lost due to this performance
slowdown. For transmission, since transmitting a single

- 276 -

ASK 2025 st 5| =27 (323 15)

message is costly, the overall throughput is greatly affected.
Our experiments show that attempting to transmit multiple
messages at tight intervals results in a 33% throughput
degradation. Figure 2. shows the world switches that may be
required to handle a simple transmission interrupt and before
sending another message.

Therefore, the developer must devise a smarter way to
improve both transmission throughput and reception speed to
avoid or minimize frame loss. [5] suggests reserving a whole
CPU core and running a real-time OS (RTOS) on it to handle
communication requests from other AP CPU cores. Using
TZPC, the communication peripherals are assigned to the
RTOS CPU core, such that the other CPUs cannot access it.
The challenge with this design is that it may degrade the
overall AP performance, especially if real-time
communication is only required at particular periods, not all
the time during execution. A workaround may involve
scheduling the RTOS dynamically on one of the CPU cores
as an optimization for when repeated transmission is needed
or a reception burst occurs. In this design, however, the
developer is further tasked with designing and defining the
conditions under which the RTOS can be scheduled or
paused. Another alternative is using batched transmission as
done by [1] and [2]. However, it is important to note that not
all peripherals support batched 1/O.

C2: Message Verification:

In automotive systems, messages can be authenticated
using message authentication codes (MAC). However, most
existing research proposes authenticating messages at the
computing node level. This means that a message can only be
authenticated as originating or intended to be received by a
particular AP. A more realistic solution must enforce finer-
grained authentication, verifying and authenticating
transmission messages based on the application intending to
send the message. This way, it is easy to know block
malicious applications on the AP from sending unauthorized
messages. More challenging, however, is the fact that most
real-time communication protocols such as CAN or SPI do
not include sender application information in the message,
requiring the developer to devise a means to identify the
normal world sender application at the verifier level at the
secure world end.

5. Conclusion

In this paper, we present a basic framework for securing
real-time communication on application processors in
distributed mixed criticality systems, taking automotive
systems as an example, using TrustZone. For our reader, we
also outline challenges that may be encountered in realizing
this framework in a real-world system. Our framework relies
on TrustZone which is readily available on commonly used
ARM Cortex-A processors and does not require additional
hardware such as TPMs. For future works, we plan on
devising solutions to the outlined challenges to reduce the
transmission throughput overhead and reception frame loss.

6. Acknowledgements

This research was supported by Korea Planning &
Evaluation Institute of Industrial Technology (KEIT) grant

funded by the Korean Government (MOTIE) (No. RS-2024-
00406121, Development of an Automotive Security
Vulnerability-based Threat Analysis System(R&D)). This
work as also supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
under the artificial intelligence semiconductor support
program to nurture the best talents (IITP-2023-RS-2023-
00256081) grant funded by the Korea government (MSIT).
Additionally, this work was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (RS-2023-00277326).
Furthermore, this work was supported by the BK21 FOUR
program of the Education and Research Program for Future
ICT Pioneers, Seoul National University in 2025. Finally,
this work was supported by Inter-University Semiconductor
Research Center (ISRC).

Hnes

[1] Rockl, Jonas, Nils Bernsdorf, and Tilo Miiller. "TeeFilter:
High-Assurance Network Filtering Engine for High-End
IoT and Edge Devices based on TEEs." Proceedings of
the 19th ACM Asia Conference on Computer and
Communications Security. 2024.

[2] Schwarz, Fabian. "TrustedGateway: TEE-assisted routing
and firewall enforcement using ARM TrustZone."
Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses. 2022.

[3] Plappert, Christian, and Andreas Fuchs. "Secure and
Lightweight Over-the-Air Software Update Distribution
for Connected Vehicles." Proceedings of the 39th Annual
Computer Security Applications Conference. 2023.

[4] Plappert, Christian, and Andreas Fuchs. "Secure and
lightweight ecu attestations for resilient over-the-air
updates in connected vehicles." Proceedings of the 39th
Annual Computer Security Applications Conference.
2023.

[5] Kim, Se Won, et al. "Secure device access for automotive
software." 2013 International Conference on Connected
Vehicles and Expo (ICCVE). IEEE, 2013.

[6] Raj, Himanshu, et al. "{fTPM}: A {Software-Only}
Implementation of a {TPM} Chip." 25th USENIX
Security Symposium (USENIX Security 16). 2016.

- 277 -

