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H
=
S (secure)d & Uth= AS HAFAT.
Gentry & A 5-¥ (bootstrapping)e]dt= 7|9
St AMS o] & ¢ A st SdEd
FHE)E A|ots}
BE-5 g S (Partial
AsP I

L XodQ ot (HOHT Py
HT o 9 ro ol lo

(Fully Homomorphic Encryption,
Ak, sPAs FTFHA=

Homomorphic  Encryption, PHE),

(Somewhat Homomorphic Encryption, SHE), 12|11 <F
A5d LS (FHE) 7 ol PHEZF QA, wA A4l <+
shpnhs Atk SHE = B4, w4 BEE A9

=]
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3 Aol ¢ FAZom FFE & 9l
e = o] lelBe el FHE S A st
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< dlojg e} dAAkel] w2} BFV(int), TFHE(bit) =1

2

2] 31 CKKS(double) 7} Att.

TEdEE pEh dubHoeR oda 9ld T]E
Az AA S} 7 AFAD AFel7h vk AL wiE
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glo]M Al H<F= 7)< (Privacy Enhancing/Preserving
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identification), A&  XZz}o|¥A](Differential

Privacy, DP), MPC(Secure Multi-Party Computing),
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2 deA gl
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714 (HE-logistic regression,

(Federated Learning)%o©]
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[E 1] HE-CNN X3} 7|2 2 52
O0E =2 £3
3 CryptoNets %|Z=0| HE & 0[8% CNNinference 3, SIMD
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4 (2017) representation Z[H%t& inference & 7HM
(5] HEAX
A Mg Qe RE TR 2o &
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