
하드웨어를 활용한 커버리지 기반 Fuzzing 기법 비교 연구

박종현 1, 오현영 2*

1가천대학교 AI·인공지능학부 석사과정
2가천대학교 AI·소프트웨어학부 교수

hynmail@naver.com, hyoh@ gachon.ac.kr

Comparative Study of Hardware-Based Coverage-guided

Fuzzing Techniques

Jonghyun-Park, Hyunyoung Oh
 Dept. of AI·Software, Gachon University

요 약

본 논문은 보안적 취약점을 찾는 기능인 Fuzzing 이 가진 문제점 중에서 소프트웨어 기반 커버리

지 기반 Fuzzing 이 지닌 문제점인 속도 및 오버헤드의 문제의 원인이 무엇인지 살펴보고 이에 대한

하드웨어 기반 Fuzzing 을 통한 각각의 해결 접근 방법이 무엇이 있는지 각 하드웨어 해결책의 차이

점이 무엇인지 또한 공통적으로 가지고 있는 남아있는 문제점이 무엇이며 이를 해결하기 위한 추후

발전 방향성은 어떤 방향성으로 나아가야 하는지에 대해 언급한다.

* 교신저자

1. 서론 및 배경

최근 다수의 소프트웨어 및 하드웨어의 보안 취약

점은, 입력 값에 대한 불충분한 유효성 검사 또는 비

정상 입력 처리 실패로 인해 발생했다. 예를 들어, 버

퍼 오버플로우(Buffer Overflow), 포인터 참조 오류

(Null Pointer Dereference) 등이 대표적인 사례이다. 이

러한 취약점들을 공격자가 발견하여 악용하게 될 경

우 시스템의 신뢰성이 무너지고, 심각한 보안 위반을

유발할 수 있다. 그러나 기존의 테스트 및 검증 방법

은 사전에 주어진 정보에 의존하기 때문에, 알 수 없

는 미지의 취약점을 충분히 탐지하지 못한다는 한계

점이 있다.

이런 배경에서 Fuzzing 기법이 개발자들에게 주목받

고 있다. Fuzzing 은 개발자가 소프트웨어의 보안 취약

점을 탐지하기 위해 사용하는 자동화된 테스트 기법

으로, 프로그램에 다양한 입력을 주입하여 예외나 충

돌을 유발하고 이를 분석함으로써 취약점을 탐색한다.

초기의 무작위 기반 Fuzzing 은 구현이 간단하다는 장

점이 있지만, 비체계적으로 생성된 입력으로 인해 대

부분 의미 없는 경로만을 탐색하고, 복잡한 분기 조

건을 갖는 경로에는 도달하기 어려워 탐색 효율이 낮

다. 이를 보완하기 위해 등장한 커버리지 기반

Fuzzing 은 실행 경로 정보를 피드백으로 활용하여 더

많은 코드 경로를 탐색할 수 있는 입력을 선택적으로

생성하는 방식으로, 기존 방식의 무작위성을 개선하

며 Fuzzing 의 성능을 향상시켜왔다.

그러나 커버리지 정보를 수집하기 위해 매 실행마

다 tracing 을 반복해야 하며, 이로 인해 높은 오버헤

드와 낮은 실행 속도라는 구조적 한계가 여전히 존재

한다. Ding et al[1]은 소프트웨어 기반 커버리지 기반

Fuzzing 에서 tracing 오버헤드가 전체 실행의 90% 이

상을 차지하며, 대부분의 테스트가 무의미한 경로만

탐색하게 된다고 지적하였다. 이에따라 최근에는 커

버리지 피드백의 효율성과 성능을 동시에 확보하기

위한 방안으로, 하드웨어 기반 Fuzzing 이 새로운 대

안으로 주목받고 있다.

본 논문은 하드웨어 기반 Fuzzing 기법인 SNAP[1],

GenFuzz[2], Fuzz_E[3]를 대상으로, 각 기법의 구조와

동작 방식, 성능을 중심으로 비교·분석한다. 커버리지

확보 방식, 구현 복잡도, 탐색 속도 등의 측면에서 차

이를 평가하고, 하드웨어 기반 Fuzzing 기술의 활용

가능성과 향후 확장 방향을 제시한다.

2. 하드웨어 기반 Fuzzing 기법 소개

2.1 SNAP

SNAP[1]은 커버리지 기반의 여러 문제점을 하드웨

어를 기반으로 두어 해결하여 커버리지 기반 Fuzzing

을 조금 더 원활하게 수행하고자 설계된 하드웨어

Fuzzing 이다. 커버리지 기반의 Fuzzing 은 그 자체가

큰 오버헤드를 발생시키고 실행 속도를 늦춰 Fuzzing

의 효과를 떨어뜨리며 그 결과적으로 컴퓨팅 리소스

가 낭비되어 수만 대의 머신으로 확장되는 지속적인

ASK 2025 학술발표대회 논문집 (32권 1호)

- 188 -

Fuzzing 서비스가 더욱 확대될 수 있다. 예를 들어 유

명한 Fuzzing 중 하나 인 AFL 도 소스 코드 계측으로

인해 70%의 오버 헤드를 겪으며 심지어 바이너리 전

용 프로그램의 경우 QEMU 모드에서 무려 1300%의

오버헤드를 겪는다. 이러한 커버리지 기반의 문제를

해결하기 위해 SNAP 은 커버리지 기반 Fuzzing 을 위

해 아래 그림 1 인 하드웨어 가속 tracing architecture

를 설계하여 이를 해결했다.

(그림 1) SNAP 의 하드웨어 구조도 SNAP 구조도[1] 참고

우선 1 Trace Decision Logic(1) 과정은 Fetch 단계에

서 각 명령어을 검사해 tracing 대상인지 판별하고 추

적 태그(uses_buq, uses_lbq)를 붙인다. (2)그 후 태그 된

instruction 중에서 커버리지 추적 대상이 commit 된다

면 이를 BUQ 에 삽입한다. (4)BUQ 에 삽입된 명령어

를 FSM 로 비트맵을 안전하게 업데이트한다. 이 과정

은 BUQ 의 메모리 병렬 접근 문제 방지를 위한 구조

이며 s_init 은 업데이트할 비트맵 주소를 계산한다.

이후 s_load 과정에서 해당 위치에서 현재 값을 읽고

s_store 값을 1 증가시키고 저장한다. 마지막으로

s_done 을 사용해서 완료 처리하고 큐에서 제거한다.

(5)비트맵 업데이트는 CPU 의 자원을 사용할 때만 수

행되며, 우선 순위가 가장 낮다. (6)동일한 주소에 대

한 연속 업데이트를 하나로 병합하여 store 의 수를

줄이는 과정이다. (7)한편 분기 명령(branch)가 commit

될 경우 해당 분기 정보는 LBQ 에 삽입한다. 이후 분

기 명령의 실제 타겟 주소 예측 결과를 LBQ 로 전달

한다.

각각 BUQ, LBQ 의 과정은 퍼저(Fuzzer)에게 정보를

제공한다. BUQ 를 통한 커버리지 비트맵 정보는 코드

의 어디를 실행하였는지에 대한 정보를 제공해주고

LBQ 를 통한 실행 분기 히스토리 정보는 어떻게 실

행 경로를 따라갔는지에 대한 정보를 제공해준다. 이

두가지 중요한 정보가 따로 소스 코드나 바이너리 삽

입 없이, 하드웨어에서 수집되는 것이 SNAP 의 핵심

강점이다.

SNAP 의 하드웨어 기반 설계 성능은 소프트웨어

기반 설계 중 하나인 AFL 과 실험의 결과를 비교했을

때 같은 메모리 크기인 64KB 에서 거의 3.14%의 오

버헤드를 발생시켜 AFL 이 599.77%에 비해 상당히

우수한 오버헤드 제어 성능을 보인다는 것이 나타났

다. 메모리의 크기를 늘려도 여전히 SNAP 이 더욱 빠

른 모습을 보이며 하드웨어 설계인 SNAP 이 소프트

웨어에 비해 더욱 우수하다는 것을 보여준다. 이를

통해 SNAP[1]이 실시간 Fuzzing 에 조금 더 용이하다

는 것을 보여준다. 또한 Preserving Trace 부분에서 충

돌율도 AFL 과 마찬가지로 8.94%의 충돌율을 보여준

다. 이는 SNAP 이 하드웨어 기반임에도 불구하고

AFL 과 실행 경로 구분의 정확성 측면에서 소프트웨

어 Fuzzing 과 동등한 성능을 지닌다.

SNAP[1]은 하드웨어로 설계한 Fuzzing 임에도 불구

하고 소프트웨어와 동일한 정확도를 보이며 소프트웨

어 Fuzzing 의 문제점인 오버헤드와 속도를 개선한 점

에서 매우 훌륭하다. 하지만 실험이 단일 코어 환경

기준이고 멀티 코어 환경에서의 실험이 진행되지 않

은 점과 구체적인 RTL 구현 방법에 대한 언급이 없

다는 아쉬운 점이 남아있다.

2.2 GenFuzz

GenFuzz[2]는 기존의 커버리지 기반의 Fuzzing 의 문

제점 중 하나인 무작위 입력 값 생성으로 인한 Fuzzing

의 효율성 및 속도 저하에 대해 주목하고 해결하고자

한 연구이다. GenFuzz[2]는 Genetic Algorithm(GA)과 하

드웨어의 병렬 구조를 설계하여 소프트웨어와 하드웨

어의 기능을 합하여 Fuzzing 의 문제를 해결하기 위한

연구이다. 즉 완전한 하드웨어 만을 사용한 Fuzzing

보다는 하드웨어와 소프트웨어의 결합을 통해 속도를

향상시킨 Fuzzing 알고리즘으로 해석된다.

(그림 2) GenFuzz[2]-의 전체 프로세스 구조도

GenFuzz[2]는 GPU 기반 RTL 시뮬레이션과 Genetic

Algorithm(GA)을 통합하여 하드웨어 Fuzzing 을 병렬

구조로 수행한다. 그림 2 는 GenFuzz[2]의 전체 구조

도다. 우선 (1) GA 단계에서는 이전 반복에서 수집된

입력들의 적합 값을 기반으로 유전 연산(selection,

crossover, mutation)을 수행하여 새로운 입력을 생성한

다. selection 은 Roulette-Wheel Selection 방식으로 이루

어지며, 적합성이 높을수록 선택 확률이 높다. 선택된

부모 입력은 one-point crossover 를 통해 gene 을 교환

하며, 이후 insert, delete, replace 중 하나의 변이 연산

이 적용되어 자손이 생성된다. 입력은 명령 단위의

gene 시퀀스로 표현되며 variable-length 구조를 가지므

로 탐색 공간을 유연하게 구성할 수 있다.

그 후 (2) 입력 처리 단계에서는 GA 로 생성된 입

력을 자극으로 컴파일하고 시뮬레이션 실행 파일을

준비한다. 이 과정은 CPU 코어 단위로 병렬 수행되

ASK 2025 학술발표대회 논문집 (32권 1호)

- 189 -

며, I/O 및 컴파일 시간이 지연 요인이 될 수 있다. 이

후 (3) RTL 시뮬레이션 단계에서는 입력들을 GPU 기

반 RTL 시뮬레이터인 RTLflow 로 병렬 실행한다. 이

과정에서 각 입력은 RTL 디자인 위에서 동시에 시뮬

레이션 되며, 기존의 단일 입력 방식보다 높은 처리

량을 달성한다. 시뮬레이션이 완료되면 (4) cross-check

단계에서 reference simulator 와의 결과를 비교하여 정합

성을 확인한다. 마지막으로 (5) coverage-maximization 단

계에서는 각 입력의 커버리지 맵을 기반으로 delta

coverage 와 progressive coverage 를 계산하고, 이를 정규화

하여 fitness 값을 산출한다. 이 값은 다음 반복의 GA 선

택 기준으로 다시 활용된다.

GenFuzz[2]는 기존 Fuzzing 기법 대비 시뮬레이션

속도에서 큰 향상을 보인다. GPU 기반의 RTLflow 를

도입함으로써, BoomCore1 기준으로 100% 커버리지

도달 시간이 기존 DIFUZZRTL 의 172,800 초에서

2,160 초로 줄어들며 최대 80 배까지 속도 개선이 이

루어진다. 동일한 instruction 수를 기준으로 비교할 때

에도 GenFuzz 는 최대 2.1 배 더 많은 커버리지를 탐

색하며, fuzzing 성능을 빠르게 수렴시킨다. 또한 GA

는 평균적으로 20 회 반복 이내에 수렴하여 입력 생

성과 평가의 연산 부담을 제한된 시간 내에 마무리할

수 있도록 한다.

하지만 GenFuzz[2]에도 단점은 존재한다. 입력 개수

가 많아질 경우 입력 처리와 coverage 분석 과정에서

오버헤드가 누적될 수 있으며, 특히 coverage point 가

많을 경우 GA 의 알고리즘 계산 복잡도는 O(n ×

cov_size)로 선형 증가하게 된다. 또한 RTLflow 기반

병렬 시뮬레이션은 GPU 자원 활용에는 강점을 가지

나, 복잡한 RTL 설계나 GPU 자원 부족 상황에서는

기대만큼의 병렬 이점을 얻지 못할 수 있다. cross-

check 는 병렬화 되지 않으며, GA 가 지역 최적의 결

과 값에 수렴할 경우 coverage 확장에 한계가 생길 수

있다는 구조적 약점도 함께 존재한다.

2.3 Fuzz_E

앞서 소개한 두 가지 방식은 하드웨어를 기반으로

Fuzzing 을 사용하여 소프트웨어 코드 내의 결함을 살

펴보는 방식이라면 Fuzz_E[3]는 하드웨어 설계에 대

한 Fuzzing 을 실행하는 방법이다. Fuzz_E 는 RTL 접근

없이 완전한 블랙 박스 상태에서도 하드웨어 Fuzzing

을 가능하게 하는 새로운 기법으로, 내부 회로 신호

대신 FPGA 내부 전압 변동(voltage fluctuation)을 활용

하여 커버리지 정보를 간접적으로 추정한다. 이를 위

해 전압 센서를 구성하는 TDC(Time-to-Digital

Converter)를 FPGA 에 삽입하여, 각 입력에 대해 512

클럭 사이클 동안 전압의 변화를 정수 값으로 기록한

다. 전압 변화는 회로 내 활성화된 경로와 모듈에 따

라 달라지므로, 이 전압 trace 를 통해 입력이 얼마나

새로운 회로 경로를 활성화했는지 판단할 수 있다.

Fuzz_E 는 이 전압 trace 를 클러스터링 하여 피드백

메커니즘으로 활용하고, 기존과 다른 트레이스는 흥

미로운 입력으로 간주하여 Fuzzing 입력군에 추가한

다.

이 방식은 기존 회색박스 기반의 RFUZZ 와 달리

RTL 코드에 접근할 필요가 없으며, 복잡하고 암호화

된 IP 블록을 포함하는 대규모 SoC 에도 적용 가능하

다는 장점이 있다. 또한, RFUZZ 와 같은 방법이 회로

크기에 따라 높은 오버헤드를 유발하는 반면, Fuzz_E

는 전압 센서만 사용하는 방식이므로 오버헤드가 일

정하며 대규모 설계에 더욱 적합하다. 실험 결과에서

도 Fuzz_E 는 랜덤 또는 피드백 없는 Fuzzing 방식보

다 더 나은 커버리지를 확보했으며, 특히 RocketTile

과 같은 대규모 디자인에서 효과가 두드러졌다.

한편 이 논문은 실질적인 설계 적용이나 시스템 레

벨에서의 통합 관점이 부족하다는 점에서 한계를 가

진다. Fuzz_E 의 전압 기반 커버리지 추정 방식은 이

론적으로 유효함을 보여주지만, 구체적인 하드웨어

아키텍처, 모듈 간 연결 방식, 센서 배치 전략 등 실

제 설계자 입장에서 필요한 구현 세부사항은 거의 제

시되어 있지 않다. 또한, 피드백 계산에서 사용하는

클러스터링 알고리즘의 연산 복잡도에 대한 분석은

부재하며, 이러한 연산이 Fuzzing 의 실시간성 또는

실용성에 어떤 영향을 미치는지에 대한 논의도 부족

하다. 가장 큰 문제는 Fuzz_E 가 도입한 전압 기반 피

드백이 실제 버그 탐지 성능과 얼마나 밀접하게 연관

되어 있는지를 입증하는 실험이 미흡하다는 점이다.

커버리지 증가만을 성과로 강조하며, 발견된 실제 취

약점이나 결함에 대한 사례 분석이 결여되어 있어 실

질적 유효성 검증이 제한적이다. Fuzz_E 는 비공개 구

조와 구현 세부 부족 등 한계가 있었으며, 이러한 문

제를 개선한 FuzzWiz[4]가 제안되었다. FuzzWiz[4]는

하드웨어를 소프트웨어 모델로 추상화하여 다양한 퍼

저를 적용 가능하게 하였고, 퍼저 간 커버리지를 정

량적으로 비교할 수 있는 프레임워크를 제공한다.

3 하드웨어 기반 Fuzzing 의 비교 분석

기준 SNAP GenFuzz Fuzz_E

활용 하드웨

어

SoC GPU FPGA 실험

하드웨어 활

용 범위

Coverage trace 병렬 시뮬레이

션 기반 입력

진화

회로 신호 기

반 블랙박스

검증

Fuzzing 대상 SW SW HW

오픈 소스 X O X

(표 1) 하드웨어 Fuzzing 의 성능 비교 분석

세 가지 하드웨어 기반 Fuzzing 기법은 적용 대상,

하드웨어 구현 방식, Fuzzing 의 초점, 소스 공개 여부

등에서 뚜렷한 차이를 보인다.

 먼저, SNAP[1]은 기존 소프트웨어 기반 커버리지 추적

의 성능 병목을 해결하기 위해, 하드웨어 수준에서 직

접 커버리지 정보를 수집할 수 있도록 설계된 전용 트

레이서이다. 소프트웨어 도구나 코드 삽입 없이 CPU

파이프라인 내부에서 추적을 수행하며, 모든 Fuzzing

과정은 순수 하드웨어 기반으로 실행된다. 특히 RISC-

V BOOM 프로세서 기반으로 구현되어, 소스 코드의 유

무와 관계없이 다양한 바이너리 프로그램에 적용 가능

ASK 2025 학술발표대회 논문집 (32권 1호)

- 190 -

하다는 점에서 기존 방식과 뚜렷한 차별성을 가진다.

GenFuzz[2]는 GPU 병렬 구조를 활용하여, 다수의 입력

집합을 동시에 평가할 수 있는 병렬 시뮬레이션 기반

입력 진화 시스템을 구현하였다. 이 기법은 Genetic

Algorithm 을 활용한 소프트웨어적 Fuzzing 전략과 GPU

기반 하드웨어 병렬처리 구조를 결합함으로써, 소프트

웨어 Fuzzing 의 성능 병목을 개선하고 처리량을 대폭

향상시켰다. 또한 해당 알고리즘은 GitHub 를 통해 공

개된 오픈 소스로, 실제 적용 및 확장 가능성 측면에서

도 강점을 지닌다. 마지막으로, Fuzz_E[3]는 하드웨어

구조 자체를 Fuzzing 의 대상으로 삼는 회로 수준의 블

랙박스 검증 기법이다. 기존의 소프트웨어 Fuzzing 처럼

코드 기반 분석이 아닌, 전기적 신호 및 트랜잭션 레벨

의 반응 분석을 통해 회로 결함을 탐지한다는 점에서

독자적인 구조를 가진다. 이 방식은 실험을 위해

FPGA 기반의 하드웨어 환경을 설계하고 적용해야 하

며, 분석 대상 자체가 하드웨어라는 점에서 기존

Fuzzing 과 개념적 차이를 가진다. 오픈소스 여부에서는

SNAP[1]과 Fuzz_E[3]가 비공개 구조인 반면, GenFuzz[2]

는 알고리즘 전반을 공개하고 있어 활용 접근성에서도

차이를 보인다.

4. 한계점 및 향후 연구

SNAP, GenFuzz, Fuzz_E 는 하드웨어 기반 Fuzzing 의

성능 향상과 커버리지 개선에 기여했지만, 각 기법은

기술적 제약도 지닌다. SNAP 은 SoC 내 하드웨어 트

레이서를 통해 실시간 커버리지 수집이 가능하지만,

RISC-V BOOM 아키텍처에만 적용되어 다양한 ISA 환

경에서의 범용성이 부족하며, 다중 코어 환경 확장도

미비하다. GenFuzz[2]는 GPU 병렬 시뮬레이션을 통해

입력 생성을 가속화했으나, 단일 GPU 환경에만 한정

되고, 멀티 스레딩이나 분산 구조에 대한 검증 및 하

드웨어 연동 구조 설명이 부족하다. Fuzz_E[3]는 회로

단위 Fuzzing 이라는 새로운 접근을 제시하지만, FPGA

환경에 종속되어 있고, 신호 해석 정확도나 센서 구

성에 대한 구체적 논의가 부족하다.

따라서 SNAP 은 다양한 아키텍처에서 활용 가능한

모듈형 트레이서 IP 및 표준 인터페이스 개발이 필요

하다. GenFuzz[2] 병렬 평가 구조를 멀티-GPU 및 분산

환경으로 확장하고, 유전 알고리즘 기반 입력 생성의

하드웨어 연동 방식을 구체화해야 한다. Fuzz_E[3]는

신호 기반 커버리지 해석의 신뢰성을 높이기 위한 센

서 배치 최적화와 FPGA 외 환경에서도 적용 가능한

회로 분석 모듈 개발이 요구된다. 또한 SNAP[1]의 커

버리지 수집, GenFuzz[2]의 병렬 처리, Fuzz_E[3]의 회

로 중심 분석을 결합한 하이브리드 Fuzzing 구조 설

계도 향후 연구로 제안할 수 있다.

5. 결론

본 논문에서는 SNAP[1], GenFuzz[2], Fuzz_E[3] 세

가지 하드웨어 기반 Fuzzing 기법을 비교·분석하고,

각 기법의 구조, 장단점, 적용 대상에 대해 고찰하였

다. 이들은 서로 다른 하드웨어 자원(CPU, GPU, RTL)

을 활용하여, 기존 소프트웨어 기반 Fuzzing 의 커버

리지 한계와 성능 병목을 보완하고자 한다는 공통점

을 가진다. 그러나 구현 복잡도, 디버깅 어려움, 실제

환경 적용의 한계 등 구조적 제약도 존재한다. 향후

연구는 이러한 문제를 개선하고, 하드웨어 기반

Fuzzing 의 실용성과 확장성을 높이는 방향으로 나아

가야 할 것이다.

특히 SNAP[1]은 하드웨어만으로 Fuzzing 을 수행할

수 있는 구조적 완성도와 낮은 오버헤드를 통해 성능

측면에서 강점을 보인다. 예를 들어, 64KB 입력 환경

에서 SNAP[1]은 3.14%의 오버헤드를 기록하며, 소프

트웨어 기반 AFL 대비 약 190 배의 실행 효율을 달성

하였다. GenFuzz[2]는 GPU 병렬 구조와 오픈소스 기

반 확장성을 통해 실용성과 활용도가 높다. Fuzz_E[3]

는 회로 자체를 대상으로 하는 독자적인 접근이지만,

FPGA 환경에 국한되어 있고 구조 설명이 부족한 점

은 한계로 남는다. 세 기법은 각각의 기술적 강점을

바탕으로 하드웨어 기반 Fuzzing 기술의 발전에 중요

한 기여를 할 수 있을 것으로 기대된다.

사사문구

이 논문은 2025 년도 정부(과학기술정보통신부)의 재

원으로 정보통신기획평가원의 지원을 받아 수행된 연

구 결과 임 (No. RS-2024-00337414, SW 공급망 운영환

경에서 역공학 한계를 넘어서는 자동화된 마이크로

보안 패치 기술 개발).

참고문헌

[1] Ding, R., Kim, Y., Sang, F., Xu, W., Saileshwar, G., & Kim, T.,

"Hardware Support to Improve Fuzzing Performance and

Precision," Proceedings of the 2021 ACM SIGSAC Conference

on Computer and Communications Security (CCS), 2021.

[2] Zhang, J., Dong, Z., & Liu, Z., "GenFuzz: GPU-accelerated

Hardware Fuzzing using Genetic Algorithm with Multiple

Inputs," Proceedings of the 2023 IEEE Symposium on Security

and Privacy (SP), 2023.

[3] Qian, Z., Zhang, T., & Jin, Y., "Fuzz Wars: The Voltage Awakens

– Voltage-Guided Blackbox Fuzzing on FPGAs," Proceedings

of the 30th USENIX Security Symposium, 2021.

[4] Vaibhav Sharma, Benjamin Tan, Daniel Holcomb, “FuzzWiz: A

Hardware Fuzzing Framework for Evaluating and Comparing

Fuzzers Using Software Abstractions,” arXiv preprint

arXiv:2410.17732, 2024.

ASK 2025 학술발표대회 논문집 (32권 1호)

- 191 -

