
LR 파싱을 이용한 LLM 기반 코드 완성에서 ChatGPT

3.5와 Llama 3의 비교 분석

Md Monir Ahammod Bin Atique1, Kwanghoon Choi2

1전남대학교 인공지능융합학 석사과정, 2전남대학교 인공지능융합학과 교수

monir024@jnu.ac.kr, kwanghoon.choi@jnu.ac.kr

A Comparative Analysis of ChatGPT 3.5 and Llama 3 in

LLM-Based Code Completion Using LR Parsing

Md Monir Ahammod Bin Atique, Kwanghoon Choi

Dept. of Artificial Intelligence Convergence, Chonnam National University, South Korea

Abstract

Modern integrated development environments (IDEs) rely on code completion as a key feature to enhance

coding efficiency and streamline the developer workflow. Traditional approaches to code completion have often

relied on rule-based techniques, static ranking, and prefix-based filtering, which pose challenges in terms of

usability and efficiency. Recent research has introduced LR-parsing-based approaches that generate structural

candidate suggestions by leveraging language syntax and open-source programs, but they often require manual

refinement. Meanwhile, recent advancements in large language models (LLMs) have significantly amplified

predictive performance in code completion tasks. However, despite these progress, the impact of LLM selection on

LR-parsing based syntax-aware code generation remains underexplored. In this study, we conduct a comparative

analysis of the performance and impact of two prominent LLMs, ChatGPT 3.5 and Llama 3, within an LR parsing-

based code completion framework. Our experiments, evaluated using SacreBLEU and SequenceMatcher accuracy

metrics, reveal that ChatGPT 3.5 achieves higher accuracy than Llama 3, underscoring the importance of selecting

an appropriate LLM for enhanced code completion. These findings highlight the role of model selection in LLM-

based code completion using LR parsing. Future research could extend this comparative analysis to a broader

range of LLMs.

1. Introduction

Code completion is a fundamental feature in modern IDEs,

significantly promoting developer productivity by reducing

keystrokes, minimizing syntax errors, and improving

efficiency in writing syntactically correct code. Traditional

code completion methods primarily rely on prefix-based

filtering and static ranking, often producing extensive

suggestion lists with limited contextual awareness and

without effective ranking. To address these limitations,

several approaches have been taken by researchers. One

novel approach, based on syntax analysis and LR parsing

theory [1], has been proposed. On the other hand, recent

growth in LLMs have transformed code completion

strategies by leveraging vast training data to generate

sophisticated, accurate, context-aware, and probabilistic

predictions. Notably, models such as OpenAI’s ChatGPT (3.5

Turbo) and Meta AI’s Llama 3 have recently demonstrated

substantial capabilities in generating syntactically correct and

semantically meaningful code suggestions. However, despite

these advancements, ensuring broader structural correctness,

including adherence to language constraints and maintaining

logical consistency, remains a challenge in LLM based code

completion.

LR parsing, a well-established technique in compiler

theory, has been effectively employed in code completion to

generate structured completion candidates (structural

candidate). Sasano and Choi [2,3] formally defined structural

code completion candidates (𝛾) for a prefix (𝛼𝛽) in a

sentential form. If an LR grammar contains a production

A→βγ allowing βγ to reduce to nonterminal A, then γ

qualifies as structural candidates. The concept of structural

candidates for code completion within the framework of LR

parsing is explored in detail by Sasano and Choi in [2]. In a

subsequent study, Choi et al. [4] introduced a ranking

mechanism for these structural candidates based on pre-

analyzed frequencies of their occurrences in open-source

projects, but their study left usability concerns unresolved.

More recently, in our previous study [5], we proposed LLMs,

such as ChatGPT, with LR parsing-based structural

candidates. This approach presents a promising solution for

syntax-aware code completion, enhancing both productivity

and usability. However, the comparative effectiveness of

different LLMs in LR parsing-based code completion

remains unexplored, leading to a key research question:

Which model, ChatGPT or Llama, demonstrates better

performance in LR parsing-based code generation?

ASK 2025 학술발표대회 논문집 (32권 1호)

- 580 -

To address the research question, this paper presents a

comparative experimental study analyzing the performance

of ChatGPT 3.5 and Llama 3 in LLM-based code completion

using LR parsing. We evaluated their performance using

SacreBLEU and SequenceMatcher accuracy metrics to

determine the impact of model selection on syntax-aware

code generation with LR parsing. Our key findings indicate

that ChatGPT 3.5 outperforms Llama 3, achieving higher

accuracy in syntactically correct code completions in

experiments using Microsoft Small Basic and C languages.

This reinforces the importance of selecting an appropriate

LLM to optimize code completion within LR-structured

candidates. This study makes the following key contribution:

 We assess the performance of different LLMs, such as

ChatGPT 3.5 and Llama 3, in LR parsing-based code

completion, highlighting the impact of model selection

on accuracy.

 Our findings indicate that choosing the ChatGPT model

over Llama provides advantage in achieving higher

accuracy for LLM-based code completion using LR

parsing.

The significance of our study lies in its contribution to

understanding the role of LLM selection in syntax-aware

code completion and the interplay between LR structural

candidates and probabilistic language models. Our findings

offer valuable insights into the application of LLMs in code

completion, benefiting IDE developers and researchers

aiming to optimize code completion strategies. Given these

insights, future research could expand upon this study by

investigating alternative methods for integrating structured

parsing techniques. This paper is organized as follows:

Section 2 covers related work, Section 3 presents our overall

system, Section 4 discusses the results and analysis, and

Section 5 provides the conclusion along with future

directions.

2. Related Work

The integration of LLMs into code completion tools has

garnered significant attention in recent research. OpenAI's

ChatGPT has been extensively utilized for code generation

and completion tasks. Studies have demonstrated that prompt

engineering can substantially enhance ChatGPT's code

generation performance, highlighting the model's

adaptability to various coding scenarios [6]. Additionally, in

their study, empirical evaluations have assessed ChatGPT's

effectiveness in code generation, program repair, and code

summarization, providing insights into its practical

applications and limitations in software engineering.

In parallel, Meta AI introduced Code Llama, a code-

specialized version of the Llama 3 model, designed to

generate and discuss code. Trained on a diverse dataset, it

supports multiple programming languages, including Python,

C++, Java, and more, aiming to enhance developer

workflows by providing efficient code generation and

completion capabilities [7]. Comparative analyses have

shown that it outperforms other models in specific tasks,

such as OpenAPI code completion, indicating its potential

superiority in certain coding applications [8].

Despite these advancements, direct comparative studies

between ChatGPT and Llama-based models in the context of

LR parsing-based code completion remain limited. This

study aims to address this gap by empirically evaluating the

performance of ChatGPT 3.5 and Llama 3 within this

specific LR-parsed framework, providing insights into their

relative effectiveness in generating accurate and syntactically

correct code completions.

3. Methodology

3.1 Experimental Setup

To evaluate the performance of ChatGPT 3.5 and Llama 3

in LR parsing-based code completion, we conducted

experiments on two programming languages: Microsoft

Small Basic (SB) and C11. These languages were chosen for

their distinct syntax structures and their relevance in

introductory programming and system-level programming,

respectively. Our experimental workflow consists of two

main phases: the collecting and ranking phase (offline) and

the query phase (online) which is depicted in Figure 1. The

offline phase serves as the foundation of this research and

has been detailed in previous work [4], while the online

phase is the primary focus of this study. The online phase

provides an efficient code completion system by leveraging

LR parsing and LLM-based candidate code generation.

Figure 1: Overview of our system workflow

The experimental setup involved the following steps:

1. Candidate collection & ranking by LR parsing (offline):

The training set, collection of samples undergoes LR

parsing to generate structural candidates and then

ranked in this phase. The training set consists of 3,701

Small Basic programs collected from its community

and 412 C11 programs sourced from open-source

software repositories.

2. Database storage: The parsed structural candidates are

stored in a database, where they are ranked based on

their occurrence frequency in the training set. The

database [4] maintains a mapping between parse states

and their ranked candidates, enabling efficient retrieval.

For instance, in the database for State 0, several

structural candidates are stored along with their

occurrence frequencies. Below, we present three ranked

candidates for State 0 as an example:

[ID=Expr] : 422

[ID.ID= Expr] : 399

[ID.ID(Exprs)] : 246

ASK 2025 학술발표대회 논문집 (32권 1호)

- 581 -

Among these, one structural candidate is the correct

choice for parse state 0, referred to as the ideal

structural candidate (e.g., ID.ID(Exprs) in this

example) for a specific cursor position in a test program.

In this case, ID represents a terminal identifier,

parentheses () are also terminal symbol, and Exprs is a

non-terminal expression. Terminal symbols, also

known as tokens, serve as the fundamental building

blocks of a language, while nonterminal symbols, or

syntactic variables, represent sets of strings composed

of terminal symbols.

3. Parsing & candidate retrieval: Upon receiving a user

query, the system converts the cursor position into a

parse state using the LR parsing technique and retrieves

the corresponding ranked structural candidates from the

database. To evaluate the system, we used a testing set

comprising 27 Small Basic programs from its tutorial

materials and 106 C11 programs from the exercises in

The C Programming Language by Kernighan and

Ritchie.

4. Model invocation: The selected ideal structural

candidates are used to construct completion prompts,

which are first processed by ChatGPT (gpt-3.5-turbo-

0125) and subsequently by Llama 3 (llama-3.1-8b-

instant) model. Since the correct (ideal) LR structural

candidates are always provided to the LLM in this

study, this represents an optimal approach, ensuring the

highest possible accuracy in code completion.

5. Final code suggestions: Our system automatically

constructs prompts with structured candidates, enabling

LLMs to generate relevant textual suggestions. These

generated suggestions are then finally presented to the

user at the specific cursor position.

6. Evaluation metrics: The generated textual code

completions were evaluated using two primary metrics:

SacreBLEU (%): Measures the n-gram similarity

between the generated and reference code, ensuring

token-level accuracy [9].

SequenceMatcher (%): Assesses character-level

alignment to determine sequence similarity,

identifying the longest matching subsequences for a

similarity ratio calculation [10].

3.2 Prompt Engineering for ChatGPT 3.5 and Llama 3

In the fourth step of our proposed system, prompts

containing ideal structural candidates were constructed to

generate completion responses for all possible cursor

positions in the test set. Each prompt template consists of an

incomplete code prefix, a selected ideal structural candidate

for each parse state (cursor position), and an instruction to

the LLM for performing code completion, as illustrated in

Figure 2. This template is then fed into the ChatGPT 3.5 and

Llama 3 models. Figure 3 presents example prompts for

Microsoft Small Basic and C. Such prompts were crafted for

all test programs during the online phase. Notably, our

system remains language-agnostic by instantiating prompt

templates with parameters tailored to each specific

programming language. Figure 4 presents a comparison of

ChatGPT 3.5 and Llama 3 responses to a prompt in

Microsoft Small Basic. ChatGPT 3.5 achieves perfect scores

with a SacreBLEU of 100% and SequenceMatcher similarity

of 100%, exactly matching the expected output. Here, it

follows the candidate structure ‘ID(Expr)’. In contrast,

Llama 3 scores significantly lower, with a SacreBLEU of

33.33% and a SequenceMatcher similarity of 43.90%, only

slightly following the structural candidate.

Prompt Template with Ideal Structural Candidate Guidance

1: This is the incomplete {Name of Programming Language} code:
2: {Program Prefix}
3: {Suggested Ideal Structural Candidate}
4: Complete the {Suggested Ideal Structural Candidate} part of the code
5: in the {Name of Programming Language}.
6: Just show your answer in place of {Suggested Ideal Structural Candidate}.

Figure 2: Prompt engineering with ideal structural candidate

Example of Prompt with Ideal Structural Candidate Guidance in
Microsoft Small Basic Language

1: This is the incomplete Microsoft Small Basic programming
2: language code:
3: number = 100
4: While (number > 1)
5: TextWindow.
6: ‘ID(Expr)’
7: Complete the ‘ID(Expr)’ part of the code in the Microsoft Small Basic
8: programming language. Just show your answer in place of ‘ID(Expr)’.

Example of Prompt with Ideal Structural Candidate Guidance in C

Language

1: This is the incomplete C programming language code:
2: int main(void)
3: {
4: char s[1000];
5: int i = 0;
6: int loop = 1;

7: ‘while (expression) scoped statement’
8: Complete the ‘while (expression) scoped_statement’ part of the code
9: in the C programming language. Just show your answer in place of
10: ‘while (expression) scoped_statement’.

Figure 3: Prompt examples for Microsoft SmallBasic and C

Comparative Evaluation of the Example in Figure 3 in Microsoft

Small Basic Language Using ChatGPT 3.5 and Llama 3

ChatGPT 3.5 Response: WriteLine(number)
Response Evaluation:
 SacreBLEU (%) score: 100
 SequenceMatcher(%) similarity precision: 100
Llama 3 Response: TextWindow.WriteLine
Response Evaluation:
 SacreBLEU (%) score: 33.333
 SequenceMatcher(%) similarity precision: 43.902
Actual Textual Answer: WriteLine(number)

Figure 4: Comparative Evaluation of LLM Responses in SB

4. Results and Discussion

4.1 Comparative Results Analysis

Table 1 presents the comparative results of code

completion performance between ChatGPT 3.5 and Llama 3

ASK 2025 학술발표대회 논문집 (32권 1호)

- 582 -

for SB and C11, using ideal structural candidate guidance

using LR parsing technique for all test programs in terms of

average SacreBLEU and SequenceMatcher.

Table 1: Code completion experiment results with ideal

structural candidate guidance using different LLMs.

Language LLM

Type

SacreBLEU

(%)

SequenceMatcher

(%)

SB ChatGPT 43.856 42.618

Llama 3 29.086 30.374

C11 ChatGPT 25.173 26.537

Llama 3 15.290 16.913

 The results indicate that ChatGPT consistently

outperforms Llama 3 in code completion accuracy,

emphasizing that the choice of LLM plays a crucial role in

optimizing syntax-aware code generation.

4.2 Discussion

Our key observations from the experimental results are as

follows:

Higher accuracy with ChatGPT: ChatGPT demonstrates

significantly better performance than Llama 3, achieving an

improvement of nearly 10% to 15% in both SacreBLEU and

SequenceMatcher scores. Specifically, ChatGPT achieves a

SacreBLEU improvement of 14.77 for Small Basic and 9.883

for C11. Similarly, the SequenceMatcher scores show an

increase of 12.244 for Small Basic and 9.624 for C11. These

results indicate that ChatGPT generates more precise and

structurally aligned code completions compared to Llama 3

across different programming languages.

Significance of model selection: These results emphasize

the importance of selecting the right LLM for syntax-aware

code completion. While both models benefit from structured

candidate guidance, ChatGPT’s architecture appears better

suited to incorporating explicit structural candidates into its

predictions.

5. Conclusion and Future Work

This study presents a comparative experimental report

evaluating the performance of ChatGPT 3.5 and Llama 3 in

LR parsing-based code completion. Our findings

demonstrate that selecting ChatGPT offers a clear advantage

in improving accuracy, as measured by SacreBLEU and

SequenceMatcher scores. This highlights the importance of

choosing the right LLM for optimizing syntax-aware code

completion.

Future research should focus on expanding the

comparative analysis to include a wider variety of LLMs to

assess their effectiveness in different programming

environments. Exploring the integration of additional fine-

tuned LLMs could further refine accuracy. Additionally,

assessing real-world developer usability and efficiency

metrics will provide deeper insights into practical adoption.

This research lays the groundwork for further advancements

in selecting and refining LLMs for high-accuracy code

completion.

Acknowledgments

This work was supported by Innovative Human Resource

Development for Local Intellectualization program through

the Institute of Information & Communications Technology

Planning & Evaluation (IITP) grant funded by the Korea

government (MSIT) (IITP-2023-RS-2023-00256629). This

work was also partially supported by the Korea Internet &

Security Agency (KISA) - Information Security College

Support Project.

References

[1] Aho, Alfred, Monica Lam, Ravi Sethi, and Jeffrey D.

Ullman. Compilers—Principles, Techniques, and Tools.

Addison Wesley, 2006.

[2] Sasano, Isao, and Kwanghoon Choi. "A text-based syntax

completion method using lr parsing." In Proceedings of

the 2021 ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation, New York, NY,

USA, 2021, pp. 32-43.

[3] Sasano, Isao, and Kwanghoon Choi. "A text-based syntax

completion method using LR parsing and its

evaluation." Science of Computer Programming 228

(2023): 102957.

[4] Choi, Kwanghoon, Sooyeon Hwang, Hyeonah Moon, and

Isao Sasano. "Ranked Syntax Completion With LR

Parsing." In Proceedings of the 39th ACM/SIGAPP

Symposium on Applied Computing, New York, USA 2024,

pp. 1242-1251.

[5] Atique, Md Monir Ahammod Bin, Kwanghoon Choi, Isao

Sasano, and Hyeon-Ah Moon. "Improving LLM-based

Code Completion Using LR Parsing-Based Candidates."

In CEUR Workshop Proceedings, 2024, vol. 3754, pp. 1-

6. CEUR-WS.

[6] Liu, Jiawei, Chunqiu Steven Xia, Yuyao Wang, and

Lingming Zhang. "Is your code generated by chatgpt

really correct? rigorous evaluation of large language

models for code generation." Advances in Neural

Information Processing Systems 36: 21558-21572, 2023.

[7] Meta AI. “Introducing Code Llama, a State-of-the-Art

Large Language Model for Coding.” Meta AI Blog,

August 24, 2023. https://ai.facebook.com/blog/code-

llama-large-language-model-coding/.

[8] Caumartin, Genevieve, Qiaolin Qin, Sharon Chatragadda,

Janmitsinh Panjrolia, Heng Li, and Diego Elias Costa.

"Exploring the Potential of Llama Models in Automated

Code Refinement: A Replication Study." arXiv preprint

arXiv:2412.02789, 2024.

[9] Post, Matt. "A call for clarity in reporting BLEU

scores." arXiv preprint arXiv:1804.08771 (2018).

[10] Foundation, P.S., 2023. Difflib — Helpers for

 computing deltas. Available at

 https://docs.python.org/3/library/difflib.html.

ASK 2025 학술발표대회 논문집 (32권 1호)

- 583 -

https://ai.facebook.com/blog/code-llama-large-language-model-coding/
https://ai.facebook.com/blog/code-llama-large-language-model-coding/

