ASK 2025 st ELN 5| =27 (323 15)

LR AL o]L3t LLM 7]¥F 3= Ao A ChatGPT
359 Llama3 9 vl 4

Md Monir Ahammod Bin Atique?, Kwanghoon Choi?

1 AEAE e es e Aty o At e A s g et wg

monir024@jnu.ac.kr, kwanghoon.choi@jnu.ac.kr

A Comparative Analysis of ChatGPT 3.5 and Llama 3 in
LLM-Based Code Completion Using LR Parsing

Md Monir Ahammod Bin Atique, Kwanghoon Choi
Dept. of Artificial Intelligence Convergence, Chonnam National University, South Korea

Abstract

Modern integrated development environments (IDEs) rely on code completion as a key feature to enhance
coding efficiency and streamline the developer workflow. Traditional approaches to code completion have often
relied on rule-based techniques, static ranking, and prefix-based filtering, which pose challenges in terms of
usability and efficiency. Recent research has introduced LR-parsing-based approaches that generate structural
candidate suggestions by leveraging language syntax and open-source programs, but they often require manual
refinement. Meanwhile, recent advancements in large language models (LLMs) have significantly amplified
predictive performance in code completion tasks. However, despite these progress, the impact of LLM selection on
LR-parsing based syntax-aware code generation remains underexplored. In this study, we conduct a comparative
analysis of the performance and impact of two prominent LLMs, ChatGPT 3.5 and Llama 3, within an LR parsing-
based code completion framework. Our experiments, evaluated using SacreBLEU and SequenceMatcher accuracy
metrics, reveal that ChatGPT 3.5 achieves higher accuracy than Llama 3, underscoring the importance of selecting
an appropriate LLM for enhanced code completion. These findings highlight the role of model selection in LLM-
based code completion using LR parsing. Future research could extend this comparative analysis to a broader

range of LLMs.

1. Introduction

Code completion is a fundamental feature in modern IDEs,
significantly promoting developer productivity by reducing
keystrokes, minimizing syntax errors, and improving
efficiency in writing syntactically correct code. Traditional
code completion methods primarily rely on prefix-based
filtering and static ranking, often producing extensive
suggestion lists with limited contextual awareness and
without effective ranking. To address these limitations,
several approaches have been taken by researchers. One
novel approach, based on syntax analysis and LR parsing
theory [1], has been proposed. On the other hand, recent
growth in LLMs have transformed code completion
strategies by leveraging vast training data to generate
sophisticated, accurate, context-aware, and probabilistic
predictions. Notably, models such as OpenAl’s ChatGPT (3.5
Turbo) and Meta Al’s Llama 3 have recently demonstrated
substantial capabilities in generating syntactically correct and
semantically meaningful code suggestions. However, despite
these advancements, ensuring broader structural correctness,
including adherence to language constraints and maintaining
logical consistency, remains a challenge in LLM based code
completion.

LR parsing, a well-established technique in compiler
theory, has been effectively employed in code completion to
generate structured completion candidates (structural
candidate). Sasano and Choi [2,3] formally defined structural
code completion candidates (y) for a prefix (aB) in a
sentential form. If an LR grammar contains a production
A—pBy allowing By to reduce to nonterminal A, then y
qualifies as structural candidates. The concept of structural
candidates for code completion within the framework of LR
parsing is explored in detail by Sasano and Choi in [2]. In a
subsequent study, Choi et al. [4] introduced a ranking
mechanism for these structural candidates based on pre-
analyzed frequencies of their occurrences in open-source
projects, but their study left usability concerns unresolved.
More recently, in our previous study [5], we proposed LLMs,
such as ChatGPT, with LR parsing-based structural
candidates. This approach presents a promising solution for
syntax-aware code completion, enhancing both productivity
and usability. However, the comparative effectiveness of
different LLMs in LR parsing-based code completion
remains unexplored, leading to a key research question:
Which model, ChatGPT or Llama, demonstrates better
performance in LR parsing-based code generation?

- 580 -

ASK 2025 st ELN 5| =27 (323 15)

To address the research question, this paper presents a
comparative experimental study analyzing the performance
of ChatGPT 3.5 and Llama 3 in LLM-based code completion
using LR parsing. We evaluated their performance using
SacreBLEU and SequenceMatcher accuracy metrics to
determine the impact of model selection on syntax-aware
code generation with LR parsing. Our key findings indicate
that ChatGPT 3.5 outperforms Llama 3, achieving higher
accuracy in syntactically correct code completions in
experiments using Microsoft Small Basic and C languages.
This reinforces the importance of selecting an appropriate
LLM to optimize code completion within LR-structured
candidates. This study makes the following key contribution:

e We assess the performance of different LLMs, such as
ChatGPT 3.5 and Llama 3, in LR parsing-based code
completion, highlighting the impact of model selection
on accuracy.

e Our findings indicate that choosing the ChatGPT model
over Llama provides advantage in achieving higher
accuracy for LLM-based code completion using LR
parsing.

The significance of our study lies in its contribution to
understanding the role of LLM selection in syntax-aware
code completion and the interplay between LR structural
candidates and probabilistic language models. Our findings
offer valuable insights into the application of LLMs in code
completion, benefiting IDE developers and researchers
aiming to optimize code completion strategies. Given these
insights, future research could expand upon this study by
investigating alternative methods for integrating structured
parsing techniques. This paper is organized as follows:
Section 2 covers related work, Section 3 presents our overall
system, Section 4 discusses the results and analysis, and
Section 5 provides the conclusion along with future
directions.

2. Related Work

The integration of LLMs into code completion tools has
garnered significant attention in recent research. OpenAl's
ChatGPT has been extensively utilized for code generation
and completion tasks. Studies have demonstrated that prompt
engineering can substantially enhance ChatGPT's code
generation performance, highlighting the model's
adaptability to various coding scenarios [6]. Additionally, in
their study, empirical evaluations have assessed ChatGPT's
effectiveness in code generation, program repair, and code
summarization, providing insights into its practical
applications and limitations in software engineering.

In parallel, Meta Al introduced Code Llama, a code-
specialized version of the Llama 3 model, designed to
generate and discuss code. Trained on a diverse dataset, it
supports multiple programming languages, including Python,
C++, Java, and more, aiming to enhance developer
workflows by providing efficient code generation and
completion capabilities [7]. Comparative analyses have
shown that it outperforms other models in specific tasks,
such as OpenAPIl code completion, indicating its potential

superiority in certain coding applications [8].

Despite these advancements, direct comparative studies
between ChatGPT and Llama-based models in the context of
LR parsing-based code completion remain limited. This
study aims to address this gap by empirically evaluating the
performance of ChatGPT 3.5 and Llama 3 within this
specific LR-parsed framework, providing insights into their
relative effectiveness in generating accurate and syntactically
correct code completions.

3. Methodology

3.1 Experimental Setup

To evaluate the performance of ChatGPT 3.5 and Llama 3
in LR parsing-based code completion, we conducted
experiments on two programming languages: Microsoft
Small Basic (SB) and C11. These languages were chosen for
their distinct syntax structures and their relevance in
introductory programming and system-level programming,
respectively. Our experimental workflow consists of two
main phases: the collecting and ranking phase (offline) and
the query phase (online) which is depicted in Figure 1. The
offline phase serves as the foundation of this research and
has been detailed in previous work [4], while the online
phase is the primary focus of this study. The online phase
provides an efficient code completion system by leveraging
LR parsing and LLM-based candidate code generation.

P
Candidate
collection &
ranking

I Conversion (LR parsing)

amole position

=>ranked | structural

Fleshing out textual
candidates J candidates

parse states
(IR parsing) (ChatGPT or Liama) | canditetds /SR

f Sample
Programs

v g \
Collecting & ranking phase (offline) Query phase (onling)

Figure 1: Overview of our system workflow
The experimental setup involved the following steps:

1. Candidate collection & ranking by LR parsing (offline):
The training set, collection of samples undergoes LR
parsing to generate structural candidates and then
ranked in this phase. The training set consists of 3,701
Small Basic programs collected from its community
and 412 C11 programs sourced from open-source
software repositories.

2. Database storage: The parsed structural candidates are
stored in a database, where they are ranked based on
their occurrence frequency in the training set. The
database [4] maintains a mapping between parse states
and their ranked candidates, enabling efficient retrieval.
For instance, in the database for State 0, several
structural candidates are stored along with their
occurrence frequencies. Below, we present three ranked
candidates for State 0 as an example:

[ID=Expr] : 422
[ID.ID= Expr] : 399
[ID.ID(Exprs)] : 246

- 581 -

ASK 2025 st ELN 5| =27 (323 15)

Among these, one structural candidate is the correct
choice for parse state O, referred to as the ideal
structural candidate (e.g., ID.ID(Exprs) in this

example) for a specific cursor position in a test program.

In this case, ID represents a terminal identifier,
parentheses () are also terminal symbol, and Exprs is a
non-terminal expression. Terminal symbols, also
known as tokens, serve as the fundamental building
blocks of a language, while nonterminal symbols, or
syntactic variables, represent sets of strings composed
of terminal symbols.

3. Parsing & candidate retrieval: Upon receiving a user
query, the system converts the cursor position into a
parse state using the LR parsing technique and retrieves
the corresponding ranked structural candidates from the
database. To evaluate the system, we used a testing set
comprising 27 Small Basic programs from its tutorial
materials and 106 C11 programs from the exercises in
The C Programming Language by Kernighan and
Ritchie.

4. Model invocation: The selected ideal structural
candidates are used to construct completion prompts,
which are first processed by ChatGPT (gpt-3.5-turbo-
0125) and subsequently by Llama 3 (llama-3.1-8b-
instant) model. Since the correct (ideal) LR structural
candidates are always provided to the LLM in this
study, this represents an optimal approach, ensuring the
highest possible accuracy in code completion.

5. Final code suggestions: Our system automatically
constructs prompts with structured candidates, enabling
LLMs to generate relevant textual suggestions. These
generated suggestions are then finally presented to the
user at the specific cursor position.

6. Evaluation metrics: The generated textual code
completions were evaluated using two primary metrics:

SacreBLEU (%): Measures the n-gram similarity
between the generated and reference code, ensuring
token-level accuracy [9].

SequenceMatcher (%): Assesses character-level
alignment to determine sequence similarity,
identifying the longest matching subsequences for a
similarity ratio calculation [10].

3.2 Prompt Engineering for ChatGPT 3.5 and Llama 3

In the fourth step of our proposed system, prompts
containing ideal structural candidates were constructed to
generate completion responses for all possible cursor
positions in the test set. Each prompt template consists of an
incomplete code prefix, a selected ideal structural candidate
for each parse state (cursor position), and an instruction to
the LLM for performing code completion, as illustrated in
Figure 2. This template is then fed into the ChatGPT 3.5 and
Llama 3 models. Figure 3 presents example prompts for
Microsoft Small Basic and C. Such prompts were crafted for

all test programs during the online phase. Notably, our
system remains language-agnostic by instantiating prompt
templates with parameters tailored to each specific
programming language. Figure 4 presents a comparison of
ChatGPT 3.5 and Llama 3 responses to a prompt in
Microsoft Small Basic. ChatGPT 3.5 achieves perfect scores
with a SacreBLEU of 100% and SequenceMatcher similarity
of 100%, exactly matching the expected output. Here, it
follows the candidate structure ‘ID(Expr)’. In contrast,
Llama 3 scores significantly lower, with a SacreBLEU of
33.33% and a SequenceMatcher similarity of 43.90%, only
slightly following the structural candidate.

Prompt Template with Ideal Structural Candidate Guidance

1: This is the incomplete {Name of Programming Language} code:

2: {Program Prefix}

3: {Suggested Ideal Structural Candidate}

4: Complete the {Suggested Ideal Structural Candidate} part of the code
5:in the {Name of Programming Language}.

6: Just show your answer in place of {Suggested Ideal Structural Candidate}.

Figure 2: Prompt engineering with ideal structural candidate

Example of Prompt with lIdeal Structural Candidate Guidance in
Microsoft Small Basic Language

1: This is the incomplete Microsoft Small Basic programming
: language code:

: number =100

: While (number > 1)
: TextWindow.

: ‘ID(Expr)’

: Complete the ‘ID(Expr)’ part of the code in the Microsoft Small Basic
: programming language. Just show your answer in place of ‘ID(Expr)’.

Example of Prompt with Ideal Structural Candidate Guidance in C
Language

1: This is the incomplete C programming language code:
2: int main(void)

3:{

4 char s[1000];

5: inti=0;

6 intloop =1;

7: ‘while (expression) scoped statement’

8: Complete the ‘while (expression) scoped_statement’ part of the code
9: in the C programming language. Just show your answer in place of
10: ‘while (expression) scoped_statement’.

Figure 3: Prompt examples for Microsoft SmallBasic and C

Comparative Evaluation of the Example in Figure 3 in Microsoft
Small Basic Language Using ChatGPT 3.5 and Llama 3

ChatGPT 3.5 Response: WriteLine(number)
Response Evaluation:

SacreBLEU (%) score: 100

SequenceMatcher(%) similarity precision: 100
Llama 3 Response: TextWindow.WriteLine
Response Evaluation:

SacreBLEU (%) score: 33.333

SequenceMatcher(%) similarity precision: 43.902
Actual Textual Answer: WriteLine(number)

Figure 4: Comparative Evaluation of LLM Responses in SB
4. Results and Discussion

4.1 Comparative Results Analysis
Table 1 presents the comparative results of code
completion performance between ChatGPT 3.5 and Llama 3

- 582 -

ASK 2025 st ELN 5| =27 (323 15)

for SB and C11, using ideal structural candidate guidance
using LR parsing technique for all test programs in terms of
average SacreBLEU and SequenceMatcher.

Table 1: Code completion experiment results with ideal
structural candidate guidance using different LLMs.

Language | LLM SacreBLEU | SequenceMatcher
Type (%) (%)
SB ChatGPT | 43.856 42.618
Llama3 | 29.086 30.374
Cl1 ChatGPT | 25.173 26.537
Llama3 | 15.290 16.913
The results indicate that ChatGPT consistently
outperforms Llama 3 in code completion accuracy,

emphasizing that the choice of LLM plays a crucial role in
optimizing syntax-aware code generation.

4.2 Discussion

Our key observations from the experimental results are as
follows:

Higher accuracy with ChatGPT: ChatGPT demonstrates
significantly better performance than Llama 3, achieving an
improvement of nearly 10% to 15% in both SacreBLEU and
SequenceMatcher scores. Specifically, ChatGPT achieves a
SacreBLEU improvement of 14.77 for Small Basic and 9.883
for C11. Similarly, the SequenceMatcher scores show an
increase of 12.244 for Small Basic and 9.624 for C11. These
results indicate that ChatGPT generates more precise and
structurally aligned code completions compared to Llama 3
across different programming languages.

Significance of model selection: These results emphasize
the importance of selecting the right LLM for syntax-aware
code completion. While both models benefit from structured
candidate guidance, ChatGPT’s architecture appears better
suited to incorporating explicit structural candidates into its
predictions.

5. Conclusion and Future Work

This study presents a comparative experimental report
evaluating the performance of ChatGPT 3.5 and Llama 3 in
LR parsing-based code completion. Our findings
demonstrate that selecting ChatGPT offers a clear advantage
in improving accuracy, as measured by SacreBLEU and
SequenceMatcher scores. This highlights the importance of
choosing the right LLM for optimizing syntax-aware code
completion.

Future research should focus on expanding the
comparative analysis to include a wider variety of LLMs to
assess their effectiveness in different programming
environments. Exploring the integration of additional fine-
tuned LLMs could further refine accuracy. Additionally,
assessing real-world developer usability and efficiency
metrics will provide deeper insights into practical adoption.
This research lays the groundwork for further advancements
in selecting and refining LLMs for high-accuracy code
completion.

Acknowledgments

This work was supported by Innovative Human Resource
Development for Local Intellectualization program through
the Institute of Information & Communications Technology
Planning & Evaluation (I1TP) grant funded by the Korea
government (MSIT) (I1TP-2023-RS-2023-00256629). This
work was also partially supported by the Korea Internet &
Security Agency (KISA) - Information Security College
Support Project.

References

[1] Aho, Alfred, Monica Lam, Ravi Sethi, and Jeffrey D.
Ullman. Compilers—Principles, Techniques, and Tools.
Addison Wesley, 2006.

[2] Sasano, Isao, and Kwanghoon Choi. "A text-based syntax
completion method using Ir parsing." In Proceedings of
the 2021 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, New York, NY,
USA, 2021, pp. 32-43.

[3] Sasano, Isao, and Kwanghoon Choi. "A text-based syntax
completion method using LR parsing and its
evaluation." Science of Computer Programming 228
(2023): 102957.

[4] Choi, Kwanghoon, Sooyeon Hwang, Hyeonah Moon, and
Isa0 Sasano. "Ranked Syntax Completion With LR
Parsing." In Proceedings of the 39th ACM/SIGAPP
Symposium on Applied Computing, New York, USA 2024,
pp. 1242-1251.

[5] Atique, Md Monir Ahammaod Bin, Kwanghoon Choi, Isao
Sasano, and Hyeon-Ah Moon. "Improving LLM-based
Code Completion Using LR Parsing-Based Candidates."
In CEUR Workshop Proceedings, 2024, vol. 3754, pp. 1-
6. CEUR-WS.

[6] Liu, Jiawei, Chungiu Steven Xia, Yuyao Wang, and
Lingming Zhang. "Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation." Advances in Neural
Information Processing Systems 36: 21558-21572, 2023.

[7] Meta Al “Introducing Code Llama, a State-of-the-Art
Large Language Model for Coding.” Meta Al Blog,
August 24, 2023. https://ai.facebook.com/blog/code-
llama-large-language-model-coding/.

[8] Caumartin, Genevieve, Qiaolin Qin, Sharon Chatragadda,
Janmitsinh Panjrolia, Heng Li, and Diego Elias Costa.
"Exploring the Potential of Llama Models in Automated
Code Refinement: A Replication Study." arXiv preprint
arXiv:2412.02789, 2024.

[9] Post, Matt. "A call for clarity in reporting BLEU
scores." arXiv preprint arXiv:1804.08771 (2018).

[10] Foundation, P.S., 2023. Difflib — Helpers for
computing deltas. Available at
https://docs.python.org/3/library/difflib.html.

- 583 -

https://ai.facebook.com/blog/code-llama-large-language-model-coding/
https://ai.facebook.com/blog/code-llama-large-language-model-coding/

