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Abstract 

Modern integrated development environments (IDEs) rely on code completion as a key feature to enhance 

coding efficiency and streamline the developer workflow. Traditional approaches to code completion have often 

relied on rule-based techniques, static ranking, and prefix-based filtering, which pose challenges in terms of 

usability and efficiency. Recent research has introduced LR-parsing-based approaches that generate structural 

candidate suggestions by leveraging language syntax and open-source programs, but they often require manual 

refinement. Meanwhile, recent advancements in large language models (LLMs) have significantly amplified 

predictive performance in code completion tasks. However, despite these progress, the impact of LLM selection on 

LR-parsing based syntax-aware code generation remains underexplored. In this study, we conduct a comparative 

analysis of the performance and impact of two prominent LLMs, ChatGPT 3.5 and Llama 3, within an LR parsing-

based code completion framework. Our experiments, evaluated using SacreBLEU and SequenceMatcher accuracy 

metrics, reveal that ChatGPT 3.5 achieves higher accuracy than Llama 3, underscoring the importance of selecting 

an appropriate LLM for enhanced code completion. These findings highlight the role of model selection in LLM-

based code completion using LR parsing. Future research could extend this comparative analysis to a broader 

range of LLMs. 

 

1. Introduction 

Code completion is a fundamental feature in modern IDEs, 

significantly promoting developer productivity by reducing 

keystrokes, minimizing syntax errors, and improving 

efficiency in writing syntactically correct code. Traditional 

code completion methods primarily rely on prefix-based 

filtering and static ranking, often producing extensive 

suggestion lists with limited contextual awareness and 

without effective ranking. To address these limitations, 

several approaches have been taken by researchers. One 

novel approach, based on syntax analysis and LR parsing 

theory [1], has been proposed. On the other hand, recent 

growth in LLMs have transformed code completion 

strategies by leveraging vast training data to generate 

sophisticated, accurate, context-aware, and probabilistic 

predictions. Notably, models such as OpenAI’s ChatGPT (3.5 

Turbo) and Meta AI’s Llama 3 have recently demonstrated 

substantial capabilities in generating syntactically correct and 

semantically meaningful code suggestions. However, despite 

these advancements, ensuring broader structural correctness, 

including adherence to language constraints and maintaining 

logical consistency, remains a challenge in LLM based code 

completion. 

LR parsing, a well-established technique in compiler 

theory, has been effectively employed in code completion to 

generate structured completion candidates (structural 

candidate). Sasano and Choi [2,3] formally defined structural 

code completion candidates (𝛾) for a prefix (𝛼𝛽) in a 

sentential form. If an LR grammar contains a production 

A→βγ allowing βγ to reduce to nonterminal A, then γ 

qualifies as structural candidates. The concept of structural 

candidates for code completion within the framework of LR 

parsing is explored in detail by Sasano and Choi in [2]. In a 

subsequent study, Choi et al. [4] introduced a ranking 

mechanism for these structural candidates based on pre-

analyzed frequencies of their occurrences in open-source 

projects, but their study left usability concerns unresolved. 

More recently, in our previous study [5], we proposed LLMs, 

such as ChatGPT, with LR parsing-based structural 

candidates. This approach presents a promising solution for 

syntax-aware code completion, enhancing both productivity 

and usability. However, the comparative effectiveness of 

different LLMs in LR parsing-based code completion 

remains unexplored, leading to a key research question: 

Which model, ChatGPT or Llama, demonstrates better 

performance in LR parsing-based code generation? 
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To address the research question, this paper presents a 

comparative experimental study analyzing the performance 

of ChatGPT 3.5 and Llama 3 in LLM-based code completion 

using LR parsing. We evaluated their performance using 

SacreBLEU and SequenceMatcher accuracy metrics to 

determine the impact of model selection on syntax-aware 

code generation with LR parsing. Our key findings indicate 

that ChatGPT 3.5 outperforms Llama 3, achieving higher 

accuracy in syntactically correct code completions in 

experiments using Microsoft Small Basic and C languages. 

This reinforces the importance of selecting an appropriate 

LLM to optimize code completion within LR-structured 

candidates. This study makes the following key contribution:  

 

 We assess the performance of different LLMs, such as 

ChatGPT 3.5 and Llama 3, in LR parsing-based code 

completion, highlighting the impact of model selection 

on accuracy. 

 Our findings indicate that choosing the ChatGPT model 

over Llama provides advantage in achieving higher 

accuracy for LLM-based code completion using LR 

parsing. 

The significance of our study lies in its contribution to 

understanding the role of LLM selection in syntax-aware 

code completion and the interplay between LR structural 

candidates and probabilistic language models. Our findings 

offer valuable insights into the application of LLMs in code 

completion, benefiting IDE developers and researchers 

aiming to optimize code completion strategies. Given these 

insights, future research could expand upon this study by 

investigating alternative methods for integrating structured 

parsing techniques. This paper is organized as follows: 

Section 2 covers related work, Section 3 presents our overall 

system, Section 4 discusses the results and analysis, and 

Section 5 provides the conclusion along with future 

directions. 

 

2. Related Work 

The integration of LLMs into code completion tools has 

garnered significant attention in recent research. OpenAI's 

ChatGPT has been extensively utilized for code generation 

and completion tasks. Studies have demonstrated that prompt 

engineering can substantially enhance ChatGPT's code 

generation performance, highlighting the model's 

adaptability to various coding scenarios [6]. Additionally, in 

their study, empirical evaluations have assessed ChatGPT's 

effectiveness in code generation, program repair, and code 

summarization, providing insights into its practical 

applications and limitations in software engineering. 

In parallel, Meta AI introduced Code Llama, a code-

specialized version of the Llama 3 model, designed to 

generate and discuss code. Trained on a diverse dataset, it 

supports multiple programming languages, including Python, 

C++, Java, and more, aiming to enhance developer 

workflows by providing efficient code generation and 

completion capabilities [7]. Comparative analyses have 

shown that it outperforms other models in specific tasks, 

such as OpenAPI code completion, indicating its potential 

superiority in certain coding applications [8]. 

Despite these advancements, direct comparative studies 

between ChatGPT and Llama-based models in the context of 

LR parsing-based code completion remain limited. This 

study aims to address this gap by empirically evaluating the 

performance of ChatGPT 3.5 and Llama 3 within this 

specific LR-parsed framework, providing insights into their 

relative effectiveness in generating accurate and syntactically 

correct code completions. 

 

3. Methodology 

3.1 Experimental Setup 

To evaluate the performance of ChatGPT 3.5 and Llama 3 

in LR parsing-based code completion, we conducted 

experiments on two programming languages: Microsoft 

Small Basic (SB) and C11. These languages were chosen for 

their distinct syntax structures and their relevance in 

introductory programming and system-level programming, 

respectively. Our experimental workflow consists of two 

main phases: the collecting and ranking phase (offline) and 

the query phase (online) which is depicted in Figure 1. The 

offline phase serves as the foundation of this research and 

has been detailed in previous work [4], while the online 

phase is the primary focus of this study. The online phase 

provides an efficient code completion system by leveraging 

LR parsing and LLM-based candidate code generation. 

 

Figure 1: Overview of our system workflow 

The experimental setup involved the following steps: 

1. Candidate collection & ranking by LR parsing (offline): 

The training set, collection of samples undergoes LR 

parsing to generate structural candidates and then 

ranked in this phase. The training set consists of 3,701 

Small Basic programs collected from its community 

and 412 C11 programs sourced from open-source 

software repositories. 

2. Database storage: The parsed structural candidates are 

stored in a database, where they are ranked based on 

their occurrence frequency in the training set. The 

database [4] maintains a mapping between parse states 

and their ranked candidates, enabling efficient retrieval. 

For instance, in the database for State 0, several 

structural candidates are stored along with their 

occurrence frequencies. Below, we present three ranked 

candidates for State 0 as an example: 

[ID=Expr] : 422 

[ID.ID= Expr] : 399 

[ID.ID(Exprs)] : 246 

ASK 2025 학술발표대회 논문집 (32권 1호)

- 581 -



Among these, one structural candidate is the correct 

choice for parse state 0, referred to as the ideal 

structural candidate (e.g., ID.ID(Exprs) in this 

example) for a specific cursor position in a test program. 

In this case, ID represents a terminal identifier, 

parentheses () are also terminal symbol, and Exprs is a 

non-terminal expression. Terminal symbols, also 

known as tokens, serve as the fundamental building 

blocks of a language, while nonterminal symbols, or 

syntactic variables, represent sets of strings composed 

of terminal symbols. 

3. Parsing & candidate retrieval: Upon receiving a user 

query, the system converts the cursor position into a 

parse state using the LR parsing technique and retrieves 

the corresponding ranked structural candidates from the 

database. To evaluate the system, we used a testing set 

comprising 27 Small Basic programs from its tutorial 

materials and 106 C11 programs from the exercises in 

The C Programming Language by Kernighan and 

Ritchie.  

4. Model invocation: The selected ideal structural 

candidates are used to construct completion prompts, 

which are first processed by ChatGPT (gpt-3.5-turbo-

0125) and subsequently by Llama 3 (llama-3.1-8b-

instant) model. Since the correct (ideal) LR structural 

candidates are always provided to the LLM in this 

study, this represents an optimal approach, ensuring the 

highest possible accuracy in code completion. 

5. Final code suggestions: Our system automatically 

constructs prompts with structured candidates, enabling 

LLMs to generate relevant textual suggestions. These 

generated suggestions are then finally presented to the 

user at the specific cursor position. 

6. Evaluation metrics: The generated textual code 

completions were evaluated using two primary metrics: 

SacreBLEU (%): Measures the n-gram similarity 

between the generated and reference code, ensuring 

token-level accuracy [9]. 

SequenceMatcher (%): Assesses character-level 

alignment to determine sequence similarity, 

identifying the longest matching subsequences for a 

similarity ratio calculation [10]. 

 

3.2 Prompt Engineering for ChatGPT 3.5 and Llama 3  

In the fourth step of our proposed system, prompts 

containing ideal structural candidates were constructed to 

generate completion responses for all possible cursor 

positions in the test set. Each prompt template consists of an 

incomplete code prefix, a selected ideal structural candidate 

for each parse state (cursor position), and an instruction to 

the LLM for performing code completion, as illustrated in 

Figure 2. This template is then fed into the ChatGPT 3.5 and 

Llama 3 models. Figure 3 presents example prompts for 

Microsoft Small Basic and C. Such prompts were crafted for 

all test programs during the online phase. Notably, our 

system remains language-agnostic by instantiating prompt 

templates with parameters tailored to each specific 

programming language. Figure 4 presents a comparison of 

ChatGPT 3.5 and Llama 3 responses to a prompt in 

Microsoft Small Basic. ChatGPT 3.5 achieves perfect scores 

with a SacreBLEU of 100% and SequenceMatcher similarity 

of 100%, exactly matching the expected output. Here, it 

follows the candidate structure ‘ID(Expr)’. In contrast, 

Llama 3 scores significantly lower, with a SacreBLEU of 

33.33% and a SequenceMatcher similarity of 43.90%, only 

slightly following the structural candidate. 

 
Prompt Template with Ideal Structural Candidate Guidance 

1: This is the incomplete {Name of Programming Language} code: 
2: {Program Prefix} 
3: {Suggested Ideal Structural Candidate} 
4: Complete the {Suggested Ideal Structural Candidate} part of the code 
5: in the {Name of Programming Language}. 
6: Just show your answer in place of {Suggested Ideal Structural Candidate}. 

Figure 2: Prompt engineering with ideal structural candidate 

Example of Prompt with Ideal Structural Candidate Guidance in  
Microsoft Small Basic Language  

1: This is the incomplete Microsoft Small Basic programming  
2: language code: 
3: number = 100 
4: While (number > 1) 
5:              TextWindow. 
6:                                  ‘ID(Expr)’ 
7: Complete the ‘ID(Expr)’ part of the code in the Microsoft Small Basic 
8: programming language. Just show your answer in place of ‘ID(Expr)’. 

 
Example of Prompt with Ideal Structural Candidate Guidance in C 

Language 

1: This is the incomplete C programming language code: 
2: int main(void) 
3: { 
4:   char s[1000]; 
5:   int i = 0; 
6:   int loop = 1; 

7:           ‘while (expression) scoped statement’ 
8: Complete the ‘while (expression) scoped_statement’ part of the code 
9: in the C programming language. Just show your answer in place of 
10: ‘while (expression) scoped_statement’. 

Figure 3: Prompt examples for Microsoft SmallBasic and C 

Comparative Evaluation of the Example in Figure 3 in Microsoft 

Small Basic Language Using ChatGPT 3.5 and Llama 3 

ChatGPT 3.5 Response: WriteLine(number) 
Response Evaluation: 
   SacreBLEU (%) score: 100 
   SequenceMatcher(%) similarity precision: 100 
Llama 3 Response: TextWindow.WriteLine 
Response Evaluation: 
   SacreBLEU (%) score: 33.333 
   SequenceMatcher(%) similarity precision: 43.902 
Actual Textual Answer: WriteLine(number) 

Figure 4: Comparative Evaluation of LLM Responses in SB 

4. Results and Discussion 

4.1 Comparative Results Analysis 

Table 1 presents the comparative results of code 

completion performance between ChatGPT 3.5 and Llama 3 
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for SB and C11, using ideal structural candidate guidance 

using LR parsing technique for all test programs in terms of 

average SacreBLEU and SequenceMatcher.  

Table 1: Code completion experiment results with ideal 

structural candidate guidance using different LLMs. 

Language LLM 

Type 

SacreBLEU

(%) 

SequenceMatcher 

(%) 

SB ChatGPT 43.856 42.618 

Llama 3 29.086 30.374 

C11 ChatGPT 25.173 26.537 

Llama 3 15.290 16.913 

   

  The results indicate that ChatGPT consistently 

outperforms Llama 3 in code completion accuracy, 

emphasizing that the choice of LLM plays a crucial role in 

optimizing syntax-aware code generation. 

4.2 Discussion 

Our key observations from the experimental results are as 

follows: 

Higher accuracy with ChatGPT: ChatGPT demonstrates 

significantly better performance than Llama 3, achieving an 

improvement of nearly 10% to 15% in both SacreBLEU and 

SequenceMatcher scores. Specifically, ChatGPT achieves a 

SacreBLEU improvement of 14.77 for Small Basic and 9.883 

for C11. Similarly, the SequenceMatcher scores show an 

increase of 12.244 for Small Basic and 9.624 for C11. These 

results indicate that ChatGPT generates more precise and 

structurally aligned code completions compared to Llama 3 

across different programming languages. 

Significance of model selection: These results emphasize 

the importance of selecting the right LLM for syntax-aware 

code completion. While both models benefit from structured 

candidate guidance, ChatGPT’s architecture appears better 

suited to incorporating explicit structural candidates into its 

predictions. 

5. Conclusion and Future Work 

This study presents a comparative experimental report 

evaluating the performance of ChatGPT 3.5 and Llama 3 in 

LR parsing-based code completion. Our findings 

demonstrate that selecting ChatGPT offers a clear advantage 

in improving accuracy, as measured by SacreBLEU and 

SequenceMatcher scores. This highlights the importance of 

choosing the right LLM for optimizing syntax-aware code 

completion. 

Future research should focus on expanding the 

comparative analysis to include a wider variety of LLMs to 

assess their effectiveness in different programming 

environments. Exploring the integration of additional fine-

tuned LLMs could further refine accuracy. Additionally, 

assessing real-world developer usability and efficiency 

metrics will provide deeper insights into practical adoption. 

This research lays the groundwork for further advancements 

in selecting and refining LLMs for high-accuracy code 

completion. 
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