
1. 서론

스마트닉은 차세대 네트워크 인터페이스 카드로,

높은 대역폭과 낮은 지연이 요구되는 클라우드 컴퓨

팅 및 대규모 네트워크 환경에서 주목받고 있다 [1].

전통적인 NIC과 달리, 스마트닉은 독립적인 연산 코

어와 전용 메모리, 그리고 네트워크 처리에 특화된

하드웨어 가속기를 탑재하여 호스트 CPU의 개입 없

이 네트워크 기능을 자체적으로 수행할 수 있다 [2].

이러한 구조는 단순한 패킷 전달을 넘어 내부에서

직접 패킷을 처리함으로써 대역폭 활용 효율을 높이

고 지연 시간을 줄이는 데 유리하다.

이러한 특성을 바탕으로, 본 논문에서는 BlueField-3

상에서의 NFV 구현 방안을 논의한다. 특히 기존 네

트워크 기능을 수정하지 않고도 활용할 수 있도록

Docker 기반 컨테이너 실행 환경을 적용하였다. 또

한 SR-IOV 기술을 활용하여 컨테이너별로 독립적

인 네트워크 흐름을 제공하도록 구성하였다. 이를

통해 BlueField-3 기반 NFV 구현 방안을 체계적으

로 분석하고, 해당 접근 방식의 확장성과 향후 응용

가능성에 대해 논의하고자 한다. 그리하여 본 연구

는 BlueField-3 기반 NFV의 실현 가능성을 실증적

으로 보여주고, 차세대 네트워크 아키텍처 설계에

대한 새로운 방향을 제시하고자 한다.

2. 본론

1) BlueField-3

BlueField-3 [3]는 NVIDIA에서 개발한 최신 스마

트닉으로, 상용 데이터센터는 물론 학술 연구 분야

에서도 활발히 활용되고 있는 고성능 네트워크 인터

페이스 장치이다. 이 장치는 16개의 ARM A78 연산

코어와 32GB DDR5 전용 메모리, 그리고 고속 네트

워크 처리를 위한 다양한 하드웨어 가속기를 탑재하

고 있다. 주요 가속기로는 SR-IOV 기반 가상화 지

원, 암복호화 전용 가속기, 페이로드 분석용 정규표

현식(RegEx) 가속기, 그리고 E-Switch 등이 있으

며, 이러한 구성을 통해 병렬 네트워크 처리와 고부

하 작업에 최적화된 구조를 제공한다.

BlueField-3는 DOCA(Data-Center-Infrastructure-o

n-a-Chip Architecture) SDK를 지원하여, 하드웨어

자원을 소프트웨어적으로 손쉽게 제어할 수 있어 높

은 수준의 확장성과 개발 편의성을 제공한다. 이를

바탕으로 DPI와 같은 네트워크 보안 처리, 스토리지

오프로딩, AI 기반 네트워크 분석 등 다양한 응용

환경에서의 활용 가능성을 크게 확장할 수 있다. 즉,

NFV의 유연성과 확장성에 BlueField-3의 하드웨어

가속 성능을 결합함으로써, 기존 CPU 기반 NFV의

성능 한계를 극복하고 보다 효율적인 네트워크 기능
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가상화를 구현할 수 있다. 또한 BlueField-3는 Off-

Path 구조를 채택한 스마트닉으로, 네트워크 경로상

에서 독립적으로 패킷을 처리할 수 있다. 이는 호스

트 CPU의 부담 없이도 낮은 지연과 높은 처리량을

확보할 수 있다는 점에서 NFV 실행에 적합하다.

이에 본 연구에서는 BlueField-3의 이점과 DOCA

SDK의 유연성을 바탕으로 NFV 구현 방법론을 고

찰하고자 하며, Docker 컨테이너 기반의 다양한 응

용 가능성도 탐색하고자 한다.

2) NFV

NFV(Network Function Virtualization) [4]는 전통적

으로 하드웨어 기반 전용 장비에서 수행되던 방화벽,

라우터, DPI(Deep Packet Inspection), 로드 밸런서 등

과 같은 네트워크 기능들을 소프트웨어로 구현하여 범

용 서버상에서 구동하는 기술이다. NFV는 네트워크 기

능을 가상화함으로써, 서비스 배포의 유연성과 확장성

을 크게 향상시키며, 하드웨어 비용 절감과 운영 효율

성 증대를 동시에 가능케 한다. 이를 통해 새로운 서비

스의 출시 시간을 단축시키고, 네트워크 인프라의 유연

한 발전 가능성을 제공한다.

그러나 기존 NFV는 범용 CPU 기반의 소프트웨어 처

리를 기반으로 하기 때문에, 고속 트래픽 처리 환경에

서는 성능 저하나 CPU 과부하 등의 문제가 발생할 수

있다. 이에 따라 최근에는 스마트닉과 같은 하드웨어

가속 기반 장치를 활용하여 NFV를 구현하려는 시도가

활발히 이루어지고 있으며, 본 연구 또한 이러한 흐름

의 일환으로 BlueField-3 기반 NFV 구현 방법론에 관

한 연구를 수행하였다.

3) SF/VF 기반의 컨테이너 네트워크 구성 방법

BlueField-3 상에서 NFV를 구현하고, 특히 Docker

컨테이너 기반의 네트워크 서비스를 구성하기 위해서는

우선 SF(Scalable Function) 및 VF(Virtual Function)의

생성이 선행되어야 한다. SF는 NVIDIA가 제안한 확장

기능으로, SR-IOV 기반의 VF와 유사한 구조를 가지면

서도 자체 전용 큐(txq, rxq)와 고유 기능을 지닌 경량

화된 가상 네트워크 기능이다. SF는 BlueField-3 내부

에서 다수의 네트워크 서비스를 동시에 실행할 수 있도

록 설계되어 있으며, BlueField-3 내부의 네트워크 흐

름을 구성하는 데 주로 활용된다 [5].

한편, VF는 PCIe 기반의 SR-IOV(Single Root I/O

Virtualization) 기술을 바탕으로 구현된 가상 인터페이

스로, 단일 물리 PCIe 장치를 다수의 논리 인터페이스

로 분할하여 각 가상 머신 혹은 컨테이너에 독립적으로

할당할 수 있도록 한다. 그리하여 VF는 호스트와

BlueField-3 간의 고속 통신 채널 역할을 수행하여 호

스트의 네트워크 기능과 BlueField-3의 오프로드 기능

이 효율적으로 연계될 수 있다. 이는 곧 물리 리소스의

효율적 활용과 트래픽 경로의 분리, 성능 격리 측면에

서 큰 이점을 제공한다. 따라서 BlueField-3 기반의

NFV 구성에서는 SF를 통해 내부 네트워크 처리를 구

성하고, VF를 통해 호스트와의 통신 경로를 확보함으

로써, 분리된 실행 환경에서 유연하고 확장가능한 네트

워크 서비스를 구현할 수 있다. 이를 위해, SF와 VF는

Open vSwitch를 통해 브리지를 구성하며, 인터페이스

간의 트래픽 경로를 정밀하게 제어할 수 있다.

특히, ovs-vsctl set Open_vSwitch . other_config:

hw-offload=true 명령어를 통해 하드웨어 오프로드 기

능을 활성화하면, 설정된 flow 룰이 ARM 코어에서

E-Switch로 오프로드되어 커널 네트워크 스택을 거치

지 않고 처리된다. 이는 트래픽 처리 시 호스트 CPU

개입을 줄이고, 패킷 지연을 감소시키며, 전반적인 처

리량을 향상시키는데 기여한다. 이를 통해 다양한 네

트워크 기능을 컨테이너 간 또는 컨테이너와 호스트

간에 유연하게 연결할 수 있으며, 서비스 체이닝과 같

은 구조도 손쉽게 구성 가능하여 고성능 NFV 환경을

구성하는데 있어 핵심적인 요소로 작용한다.

본 연구에서는 BlueField-3 상에서 생성된 SF 인터페

이스를 Docker 컨테이너의 네트워크 네임스페이스로

이동시켜, 각 컨테이너가 독립적으로 네트워크 인터페

이스를 직접 바인딩하고 제어할 수 있도록 구성하였

다. 이를 위해 먼저 컨테이너를 —pid=host 및

--network=none 옵션과 함께 실행하여, 호스트와 PID

네임스페이스는 함께 사용하되, 네트워크 네임스페이

스는 분리된 상태로 설정하였다. 그 후, ip link set

<인터페이스명> netns <PID> 명령어를 사용하여 해

당 인터페이스를 컨테이너의 네트워크 네임스페이스로

이동시켰다. 이 과정을 통해 인터페이스가 컨테이너에

연결되면, 컨테이너 내부에서는 해당 SF 인터페이스를

마치 물리 인터페이스처럼 인식하고 사용할 수 있다.

이를 기반으로 각 컨테이너는 전용 인터페이스를 활용

한 독립적인 네트워크 서비스 환경을 구성할 수 있어

특정 트래픽만을 수신하고 처리할 수 있다. 이러한 구

조는 NF 간의 성능 간섭을 방지하고, 네트워크 보안

성을 효과적으로 강화하는 데 기여한다.

또한, BlueField-3은 호스트에 비해 상대적으로 제한

된 자원을 지니고 있어 일부 고성능 처리나 복잡한

연산의 경우에는 호스트의 지원이 필연적으로 요구될

수 있다. 이러한 상황에서는 VF를 활용하여, 호스트

상에서 실행되는 컨테이너에 동일한 방식으로 연결함

으로써 BlueField-3과의 연동을 구성할 수 있다.
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<그림 1> NFV 예시 구조

VF를 호스트 컨테이너에 연결하면, BlueField-3과 호

스트 간에 전용 통신 경로와 유사한 고속 데이터 전

송 경로를 형성할 수 있으며, 이를 통해 처리 병목을

최소화하고 전체 시스템의 연산 자원을 효율적으로

활용할 수 있다. 이러한 연동 방식의 예시는 <그림

1>에 나타낸 구조에서 확인할 수 있으며, BlueField-3

과 호스트 간 트래픽 흐름을 명확히 분리할 수 있을

뿐 아니라, 컨테이너 단위의 정밀한 네트워크 제어를

가능하게 하여 NFV 환경에서의 유연성과 확장성을

더욱 향상시킬 수 있다.

4) 응용 방안

BlueField-3 기반 NFV 구조는 다양한 환경에서 효

과적으로 활용될 수 있으며, 특히 다음과 같은 응용

시나리오에서 그 가능성을 기대할 수 있다.

첫째, 멀티테넌시 환경에서 각 사용자 또는 서비스

단위로 SF와 VF를 분리하여 구성함으로써, 네트워

크 자원을 논리적으로 격리하고 성능 간섭을 최소화

할 수 있다. 이를 통해 사용자별 요구에 따라 네트워

크 기능을 유연하게 배치할 수 있을 뿐만 아니라 독

립적인 성능 보장 또한 가능하다 [6].

둘째, 방화벽과 DPI 등 다양한 네트워크 기능을 순

차적 또는 병렬적으로 연결하여 서비스 체인을 구성

할 수 있다. 각 NF는 SF 기반 인터페이스에 분리된

형태로 배치되며, BlueField-3 내부의 트래픽 흐름은

소프트웨어적으로 정밀하게 제어된다. 이를 통해 다

단계에 걸친 트래픽 처리와 고도화된 패킷 분석이

가능한 구조를 구현할 수 있으며, 서비스 간의 유연

한 조합과 확장성 또한 확보할 수 있다.

셋째, DOCA 프레임워크를 활용하면 BlueField-3에

탑재된 하드웨어 가속기와 NFV 서비스를 효과적으

로 연계할 수 있다. 예를 들어, DOCA DPI, DOCA

Crypto, DOCA Flow와 같은 가속 라이브러리를 활

용하면 NFV 환경에서도 복잡한 네트워크 기능을 고

속으로 처리할 수 있다. 이를 통해 NFV 서비스는

단순한 소프트웨어 구성 요소를 넘어, BlueField-3의

하드웨어 자원을 적극 활용하는 고성능 네트워크 기

능으로 확장될 수 있다.

이처럼 BlueField-3 기반 NFV 구조는 다양한 기술

요소들과의 결합을 통해, 성능, 보안, 확장성 측면에

서 기존 네트워크 아키텍처를 획기적으로 개선할 수

있는 잠재력을 지닌다.

3. 결론

BlueField-3에 NFV를 배치하는 것은 여러 네트워

크 기능을 고성능으로 처리할 수 있는 기반을 제공

하며, 이를 통해 폭넓은 응용 가능성을 확보할 수

있다. 특히 기존 애플리케이션을 수정하지 않고 컨

테이너 형태로 손쉽게 배포할 수 있다는 점은, 개발

과 운영 측면에서 높은 유연성과 확장성을 제공하는

큰 장점이다. 또한, SF와 VF는 BlueField-3 내부에

서 고속 데이터 경로와 기능 간 통신을 지원하는 핵

심 인프라로 활용되어, 전체 시스템의 처리 효율을

높일 수 있다. 향후 이러한 NFV 배치 구조를 하드

웨어 가속기와 연계하여 설계한다면 이러한 점으로

미루어 보아, BlueField-3 기반 NFV는 차세대 네트

워크 아키텍처의 핵심 기술로 자리매김할 가능성이

크다. 아울러, 추후 제안한 구조를 기존의 레거시

NFV 구조와 성능 및 보안 측면에서 정량적으로 비

교·분석한다면, BlueField-3 기반 NFV의 실질적인

성능 이점을 보다 명확히 평가할 수 있을 것으로 기

대된다.
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