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Dataset Features ACC Precision Recall F1-score
ECG-only 0.5975 0.8630 0.7533 0.7815
w/ age 0.6090 0.8700 0.7618 0.7888
LargeECG
w/ gender 0.6071 0.8652 0.7566 0.7842
w/ age, gender 0.6158 0.8751 0.7644 0.7923
ECG-only 0.4503 0.6154 0.5594 0.5723
w/ age 0.4730 0.6261 0.5684 0.5829
PTB-XL
w/ gender 0.4749 0.6389 0.5776 0.5924
w/ age, gender 0.4858 0.6433 0.5784 0.5962
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