
1. 서론

 한라봉은 국내 과수 산업에서 중요한 경제적 가치를 

가지며, 품질 유지를 위해 지속적인 관리가 필요하다

[1]. 그러나 기후 변화로 인해 재배지가 확대되면서 

새로운 환경에서 병해충이 발생할 가능성이 높아지

고 있으며, 이에 따라 신속하고 정확한 병징 판별의 

중요성이 더욱 부각되고 있다[2].

 한라봉 재배지에서는 주로 궤양병(Canker), 점무늬병

(Leaf Spot), 귤굴나방(Citrus Leaf Miner), 총채벌레

(Thrips) 등의 피해가 발생한다. 궤양병은 잎과 열매에 

황색 반점이 생긴 후 코르크화되며, 강우 시 빠르게 

전파된다(그림 1-A). 점무늬병은 갈색 반점이 확산되

어 잎이 말라 죽고(그림 1-B), 귤굴나방은 잎을 갱도 

형태로 파먹는다(그림 1-C). 총채벌레는 잎 세포를 파

괴해 변색을 유발한다(그림 1-D)[3].

 기존 육안 판별 방식은 숙련된 전문가가 필요하며, 

주관적 오류로 일관성이 낮다[4]. 보완책으로써 실험실 

분석이 활용되지만, 검사 비용과 시간이 많이 들며 대

규모 농가는 실시간 대응이 어렵다. 이에 스마트팜 등 

자동화 감지 시스템이 도입되며, 실제로 도입 농가는 

미도입 농가보다 34-46% 높은 농업 소득 증가율을 

보였다[5]. 특히, 데이터 효율성이 높은 딥러닝 모델을 

활용하면 높은 정확도의 실시간 병징 판별이 가능해 

실용성이 입증되고 있다[6][7]. 

 본 연구에서는 Faster R-CNN과 OpenCV를 활용

하여 한라봉 잎과 과실의 색상 및 면적을 분석하고, 

병징을 자동 감지함으로써 농가의 생산성과 상품 품

질 관리 효율성 향상에 기여하고자 한다.

(그림 1) 병징별 시각적 특징
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요       약
 기후 변화로 한라봉 재배 환경이 달라지면서 병해 발생 빈도와 심각성이 증가하고 있다. 그러나 기존 병
해 판별 방식은 주관적 오류가 발생하기 쉽고, 시간이 많이 소요되어 효율적인 관리가 어렵다. 따라서, 보
다 빠르고 정확한 병해 진단 자동화 시스템의 필요성이 커지고 있다. 본 연구에서는 딥러닝 모델과 
OpenCV를 활용하여 한라봉 잎과 과실의 병징을 자동 감지하고, 확산 정도를 정량적으로 평가함으로써 농
업 종사자의 신속한 대응을 지원하고 농가의 생산성과 상품 품질 향상에 기여하고자 한다.
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2. 한라봉 병징 탐지 분석 방법

 본 연구에서는 딥러닝 기반의 한라봉 병징 탐지를 위

해 Faster R-CNN을 적용하였으며, 모델 학습과 성능 

평가를 위해 PyTorch 환경에서 수행하였다. Faster 

R-CNN은 객체 탐지(Object Detection)에서 높은 정

확도를 제공하며, 작은 병징도 효과적으로 검출할 수 

있는 강점이 있어 본 연구에 적합하다.

(그림 2) 시스템 흐름도

2.1. 데이터 수집

 원천 데이터로는 한국지능정보사회진흥원(NIA) AI 

허브의 ‘국내 재배 아열대/열대 병해충 데이터’를 활용

하였다[8]. 한라봉 잎과 과실 이미지 총 4,320장을 훈

련용 80%(3,456장), 검증용 10%(432장), 테스트용 

10%(432장)로 분할하여 사용하였다. 또한, 각 이미지

에는 수동으로 바운딩 박스를 라벨링하여 데이터셋을 

구축하였다.

2.2. 딥러닝 기반 한라봉 병징 검출 모델

 Faster R-CNN은 Region Proposal Network(RPN)

를 활용하여 객체가 존재할 가능성이 높은 영역을 예

측한 후, 원본 이미지(그림 3-A)에서 객체를 검출하고 

바운딩 박스 회귀를 수행하는 딥러닝 모델이다(그림 

3-B)[9]. 본 연구에서는 정상 잎, 정상 과실, 궤양병, 

점무늬병, 귤굴나방, 총채벌레 등 총 6개 클래스를 

검출했다.

(그림 3) Faster R-CNN 모델의 객체 검출

모델 학습에는 일반화 성능이 우수한 

SGD(Stochastic Gradient Descent) 옵티마이저를 

사용했고, 학습 안정성을 높이기 위해 학습률 감소 

스케줄러를 적용하였다[10][11]. 또한, 과적합을 방

지하고 다양한 병징 유형을 효과적으로 탐지하기 위

해 데이터 균형을 고려하여 학습을 진행하였다.

2.3. 이미지 처리 기반 병징 부위 분석

 객체 검출 후, OpenCV 기반 이미지 처리 기법을 활

용하여 잎 및 과실의 병징 영역을 찾아 그 면적을 정

량적으로 분석한다.

<표 1> 각 병징별 HSV 필터 값

2.3.1. 공통 처리 과정 및 궤양병(Canker)

 입력 이미지를 HSV 색 공간으로 변환한 후, 최소 

[20, 20, 20], 최대 [100, 255, 255] 범위로 필터링하

여 녹색 계열을 기반으로 생성된 이진 마스크(HSV 마

스크)를 활용해 잎을 추출하였다. HSV 색 공간은 색

상과 밝기를 개별적으로 조절할 수 있어 특정 색상과 

배경을 효과적으로 구분하는 데 적합하다. 

 그러나 일부 배경이 잎으로 오검출되는 문제를 보완

하기 위해 Blur 기반 배경 억제 마스크를 적용하여 불

필요한 배경을 제거하였다. 이후, HSV 마스크와 블러 

마스크(그림 4-B)를 결합해 최종 마스크(그림 4-C)를 

생성한 뒤, GrabCut 알고리즘을 적용한다. 이를 통해 

배경을 제거하고, 최대 면적의 윤곽선만 유지하여 노

이즈를 최소화하면서 잎 영역을 분리했다(그림 4-D). 

마지막으로, <표 1>의 Canker HSV 필터를 적용하

여 병징 부위를 탐지한다.

(그림 4) HSV 및 Blur 마스크
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2.3.2. 점무늬병(Leaf Spot) & 귤굴나방(Citrus Leaf 

Miner)

 점무늬병과 귤굴나방의 잎 영역 분리는 궤양병과 동

일한 방식으로 수행된다. 그러나 병징 탐지 과정에서 

점무늬병은 채도(S)와 명도(V)에 따라 검은색부터 회

색까지 다양한 색으로 나타나므로, 단일 필터만으로는 

일부 병징을 검출하기 어렵다. 이를 보완하기 위해 두 

개의 필터를 적용하고<표 1-Leaf Spot>, 잎이 병징으

로 오검출되는 문제를 방지하기 위해 녹색 계열(H 

44-79)은 제외하였다. <표 1>의 필터별 HSV(색상

(Hue), 채도(Saturation), 명도(Value)) 범위는 병징별 

샘플 이미지 20장을 분석하여 도출한 최소-최대 값을 

기반으로 설정하였다.

 또한, 병징 일부가 잎 윤곽선과 겹치는 경우(그림 

5-A), 해당 부분이 잎 내부에 포함되도록 좌표를 보

정하는 과정을 수행하였다(그림 5-B). 이 과정은 점무

늬병과 귤굴나방에만 적용되었으며, 이는 두 병해가 

넓게 분포하는 특성을 반영한 것이다.

 병징이 탐지되면 윤곽선을 검출한 후(그림 5-C), 전

체 잎 픽셀 수 대비 병징 면적 픽셀 수의 비율(%)을 

계산한다.

(그림 5) 병징 분석 과정

2.3.3. 총채벌레(Thrips)

 검출된 객체 이미지를 HSV 색 공간으로 변환한 후, 

원형 마스크를 생성하여 과실 영역을 탐지한다. 과실

의 평균 H 값이 10-29이면 노란색(Yellow)으로 분류

하고, 색상 필터 기반으로 차례로 HSV와 Blur, 원형 

마스크의 비율을 8:1:1로 설정하여(그림 6-B, C, D) 

과실 영역을 분리하였다(그림 6-E). H 값이 30-35이

면 연두색(Yellowish Green), 36 이상이면 녹색

(Green)으로 분류한다. 그러나 이 경우 배경 잎과 과

실 색이 유사하여 명확한 구분이 어려울 수 있으므로, 

HSV 마스크의 비중을 줄이고 Blur 마스크의 비중을 

높여 2:6:2의 비율로 설정하였다(그림 7-B, C, D).

 이후, 과실 내부 평균 H 값을 기준으로 색 차이를 

계산한 뒤, 특정 임계값을 초과하는 영역을 병징 발생 

가능성이 높은 영역으로 판단하고 필터링을 수행하였

다. 총채벌레 피해 과실 테스트셋 20장을 대상으로 실

험한 결과, 색 차이 값이 3 이상일 때 병징을 효과적

으로 구별할 수 있음을 확인하였다.

 분석 결과, 색 차이 값이 3 미만일 경우 병징이 아닌 

부분까지 오탐지되는 경우가 많았으며, 반대로 값이 

너무 크면 병징의 초기 변화를 감지하는 데 한계가 있

었다. 이에 따라, 실험 데이터를 기반으로 색 차이 3

을 최적 임계값으로 설정하였다. 다만, 과실이 숙성되

면서 표면 색이 녹색에서 노란색으로 점진적으로 변하

는 과정에서 일부 노란색 영역이 병징으로 오탐지될 

가능성이 있다. 이를 방지하기 위해 이미지 내 윤곽 

감지에 활용되는 Sobel 필터를 적용하여 색상의 점진

적 변화는 배제하고, 기울기 변화가 큰 부분만 병징으

로 인식하였다.

 

(그림 6) 노란색 과실의 윤곽 처리 과정

(그림 7) 연두색-녹색 과실의 윤곽 처리 과정

3. 연구 결과

3.1. 병징 검출 모델 성능 평가

 mAP(mean Average Precision)는 객체 탐지 모델의 

성능을 정량적으로 평가하는 지표로, Precision과 

Recall의 관계를 반영하여 계산된다. 본 모델에서는 

IoU=0.50 기준 각 클래스별 AP(Average Precison)을 

구한 뒤, 이를 평균하여 전체 성능을 평가했다. 또한, 

Precision-Recall(PR) 곡선을 시각화하여 각 클래스의 

성능 분포를 분석하였다(그림 8). IoU=0.50은 딥러닝 

기반 객체 탐지 모델의 성능 평가에 널리 사용되는 학

계 표준으로, 다양한 연구 간 결과의 비교 가능성을 

높이는 데 유리하다[12].

 재학습된 Faster R-CNN 모델의 전체 mAP는 

0.7812로 나타났다. 클래스별 mAP는 0.4278-0.9771 

범위로 분포하며, 일부 병해에서는 낮은 성능을 보였

지만, 대다수 병해에서 높은 정확도를 기록하였다.

(그림 8) Faster R-CNN 모델의 Precision-Recall Curve
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3.2. 병징 부위 분석 결과

 그림 9는 테스트셋에서 무작위로 선정한 각 병징별 

이미지의 분석 결과를 시각적으로 나타낸 자료이다. 

그림 9-A부터 D까지는 각각 궤양병, 점무늬병, 귤굴

나방, 총채벌레 피해를 나타내며, 검출된 잎 영역은 녹

색, 병징 영역은 붉은색 윤곽선으로 구분되었다. 

Faster R-CNN 모델을 활용하여 각 이미지 내 잎/과

실 영역과 병징 영역의 픽셀 수를 직접 측정하고, 이

를 바탕으로 병징 면적 비율(%)을 비교 분석하였다. 

특히, 점무늬병과 귤굴나방 피해처럼 병징이 넓게 확

산된 경우 높은 면적 비율이 나타났으며, 이는 계산 

결과가 각 병해 유형의 특성을 명확하게 반영하고 있

음을 시사한다. 또한, 그림 9의 시각적 결과는 산출

된 픽셀 수의 신뢰성을 보완하는 근거로 활용될 수 

있다.

(그림 9) 각 병징 분석 결과

4. 결론

 본 연구에서는 Faster R-CNN과 OpenCV를 활용해 

한라봉 잎과 과실의 병징을 자동 감지하고, 병징 면적

을 정량적으로 분석하는 시스템을 구현하였다. 연구 

결과, 모델의 전체 mAP는 0.7812로 나타났으며, 전반

적으로 안정적인 병징 검출이 이루어졌다. 또한, 

OpenCV 기반 분석을 통해 검출된 픽셀 수를 바탕으

로 병징 면적 비율을 정확하게 산출할 수 있음을 확인

하였다. 이를 통해 본 시스템이 실시간 작물 관리에 

효과적으로 활용될 수 있음을 검증하였다. 다만, 병징 

초기 단계에서는 검출 성능이 다소 저하되는 경향을 

보여 추가적인 데이터 확보와 세분화된 학습이 필요할 

것으로 판단된다. 향후 연구에서는 다양한 작물에 적

용할 수 있는 범용 모델을 개발하여, 병징 데이터셋을 

확장하여 모델의 성능과 일반화를 더욱 향상시키는 데 

중점을 둘 계획이다.
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