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Abstract 

Depression's neurophysiological basis remains poorly understood, particularly regarding functional 

connectivity patterns. This study examines EEG coherence differences between 46 major depressive disorder 

(MDD) patients and 75 healthy controls (HC) from the PRED+CT dataset. Statistical analysis revealed significant 

reductions in global coherence across all frequency bands in depression, with the strongest effects observed in 

theta and delta bands. Support Vector Machine classification achieved promising performance, with the best results 

in the beta band (accuracy=83.28) despite this band showing the smallest statistical effects. This discrepancy 

suggests that different aspects of coherence data may contribute to biomarker development versus 

neurophysiological understanding of depression. 

 

1. Introduction 

Despite the prevalence of Major Depressive Disorder 

(MDD), objective biomarkers for depression remain poorly 

identified [1]. Electroencephalography (EEG) offers insights 

into depression's neurophysiology through functional 

connectivity analysis, which may be disrupted in mental 

disorders such as depression. 

EEG coherence measures the phase relationships between 

different brain regions and has emerged as a promising 

approach for investigating altered neural communication in 

depression. Previous studies report mixed findings, with 

some indicating reduced frontoparietal coherence [2] and 

others showing increased connectivity in specific frequency 

bands [3]. However, methodological differences and small 

sample sizes have limited generalizability. 

This study presents a statistical analysis of coherence 

differences between depression patients and healthy controls 

across multiple frequency bands. Furthermore, we implement 

machine learning to assess the diagnostic potential of 

coherence features and evaluate their usability as viable 

depression biomarkers. 

 

2. Method 

2.1 Dataset and Preprocessing 

We utilize the PRED+CT dataset [4], comprising resting-

state EEG recordings from 46 MDD patients and 75 healthy 

controls. Depression was determined using the Beck 

Depression Inventory (BDI); (BDI >7 = MDD and ≤7 = 

healthy controls) [5]. We then preprocessed the EEG data 

using standard procedures including bandpass filtering, 

artifact removal, and segmentation into four frequency 

bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and 

beta (13-30 Hz) [6-12]. 

2.2 Coherence Analysis and Statistical Approach 
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We calculated magnitude-squared coherence [13] matrices 

for each subject and frequency band, defined as: 

 

 
 

where  is the cross-spectral density. From these 

matrices, we extracted metrics including global coherence 

(mean of all connections) and the proportion of high (>0.7), 

medium (0.4-0.7), and low (<0.4) synchronization 

connections. 

Mann-Whitney U tests compared metrics between groups, 

with effect sizes calculated using Cohen's d, and Statistical 

significance was established at p<0.05 with Bonferroni 

correction. 

2.3 Classification Approach 

We performed SVM [14] classification with radial basis 

function kernel using coherence-derived features to 

differentiate MDD and healthy controls. 5-fold cross-

validation [15] with standardization was implemented, 

evaluating performance via accuracy, precision, recall, and 

F1-score [16]. 

3. Results and Discussion  

3.1 Statistical Comparison 

Statistical analysis revealed consistent patterns of altered 

connectivity in depression across frequency bands (Figure 1). 

MDD patients showed reduced global coherence compared 

to controls, with the strongest effects in theta (d=-0.34, 

p<0.001) and delta bands (d=-0.28, p<0.001), and weakest in 

beta (d=-0.06, p=0.03). 

 

(Figure 1) Global coherence comparison across bands. 

 

Depression was associated with decreased high 

synchronization connections (>0.7) across all bands, 

particularly in theta (d=-0.30) and delta (d=-0.29). 

Conversely, low synchronization connections (<0.4) showed 

significant increases, especially in theta (d=0.35). This shift 

indicates less coordinated neural activity, potentially 

reflecting network dysregulation underlying depressive 

symptoms. 

Theta band [9] demonstrated the most consistent effects 

across metrics, suggesting relevance to depression 

identification. The effect size gradient (Figure 2) shows the 

differences from delta to beta bands. Also, the standard 

deviation of coherence values was reduced in depression 

across all bands (d=-0.19 to -0.26), indicating more uniform 

connectivity patterns in MDD patients. 

 

 

(Figure 2) Depression-related changes in EEG coherence 

metrics across frequency bands. 

 

3.2 Classification Performance 

SVM classification achieved promising results, with band-

specific patterns. Interestingly, the beta band showing the 

weakest statistical effects yielded the best classification 

performance (Table 1). This highlights that, features 

characterizing group-level differences (theta band) may 

differ from those with optimal discriminative value for 

individual classification (beta band). Classification metrics 

showed progressive improvement from delta to beta 

frequencies, contrasting with statistical findings where 

stronger effects appeared in lower frequency bands. 

 

(Table 1) SVM Classification Performance Metrics Across 

Frequency Bands 

 

Frequency 

Band 

Accuracy Precision Recall F1-Score 

Delta (1-4) 72.20 52.80 64.30 67.96 

Theta (4-8) 72.69 53.44 66.72 59.33 
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Alpha (8-13) 78.05 61.73 69.48 65.36 

Beta (13-30) 83.28 69.26 79.14 73.84 

 

A key limitation of this study is the reliance on coherence 

measures, which capture only linear relationships between 

signals. In the future, we will incorporate directional 

connectivity measures to provide a more comprehensive 

characterization of network disruptions in depression. 

4. Conclusion 

In this study, we present compelling evidence that EEG 

coherence patterns can vary significantly between depression 

(MDD) and healthy control patients. Our study showed 

reduced global coherence across all frequency bands, 

particularly in the delta and theta bands. Furthermore, we 

noticed the strongest statistical effects in lower frequency 

bands, and our classification performance with SVM 

achieved the best performance on the beta band features with 

an accuracy of 83.28%. This suggests that different aspects 

of coherence data contribute to the neurophysiological 

understanding of depression and suggests that coherence 

could serve as a potentially reliable tool for depression 

detection. In the future, we will incorporate directional 

connectivity measures to better characterize network 

disruptions in depression.  
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