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Abstract

Depression's neurophysiological basis remains poorly understood, particularly regarding functional
connectivity patterns. This study examines EEG coherence differences between 46 major depressive disorder
(MDD) patients and 75 healthy controls (HC) from the PRED+CT dataset. Statistical analysis revealed significant
reductions in global coherence across all frequency bands in depression, with the strongest effects observed in
theta and delta bands. Support Vector Machine classification achieved promising performance, with the best results
in the beta band (accuracy=83.28) despite this band showing the smallest statistical effects. This discrepancy
suggests that different aspects of coherence data may contribute to biomarker development versus

neurophysiological understanding of depression.

1. Introduction

Despite the prevalence of Major Depressive Disorder
(MDD), objective biomarkers for depression remain poorly
identified [1]. Electroencephalography (EEG) offers insights
into depression's neurophysiology through functional
connectivity analysis, which may be disrupted in mental
disorders such as depression.

EEG coherence measures the phase relationships between
different brain regions and has emerged as a promising
approach for investigating altered neural communication in
depression. Previous studies report mixed findings, with
some indicating reduced frontoparietal coherence [2] and
others showing increased connectivity in specific frequency
bands [3]. However, methodological differences and small
sample sizes have limited generalizability.

This study presents a statistical analysis of coherence
differences between depression patients and healthy controls
across multiple frequency bands. Furthermore, we implement

machine learning to assess the diagnostic potential of
coherence features and evaluate their usability as viable
depression biomarkers.

2. Method
2.1 Dataset and Preprocessing

We utilize the PRED+CT dataset [4], comprising resting-
state EEG recordings from 46 MDD patients and 75 healthy
controls. Depression was determined using the Beck
Depression Inventory (BDI); (BDI >7 = MDD and <7 =
healthy controls) [5]. We then preprocessed the EEG data
using standard procedures including bandpass filtering,
artifact removal, and segmentation into four frequency
bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and
beta (13-30 Hz) [6-12].

2.2 Coherence Analysis and Statistical Approach
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We calculated magnitude-squared coherence [13] matrices
for each subject and frequency band, defined as:
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where P, (f) is the cross-spectral density. From these

matrices, we extracted metrics including global coherence
(mean of all connections) and the proportion of high (>0.7),
medium (0.4-0.7), and low (<0.4) synchronization
connections.

Mann-Whitney U tests compared metrics between groups,
with effect sizes calculated using Cohen's d, and Statistical
significance was established at p<0.05 with Bonferroni
correction.

2.3 Classification Approach

We performed SVM [14] classification with radial basis
function kernel using coherence-derived features to
differentiate MDD and healthy controls. 5-fold cross-
validation [15] with standardization was implemented,
evaluating performance via accuracy, precision, recall, and
F1-score [16].

3. Results and Discussion
3.1 Statistical Comparison

Statistical analysis revealed consistent patterns of altered
connectivity in depression across frequency bands (Figure 1).
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MDD patients showed reduced global coherence compared
to controls, with the strongest effects in theta (d=-0.34,
p<0.001) and delta bands (d=-0.28, p<0.001), and weakest in
beta (d=-0.06, p=0.03).
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(Figure 1) Global coherence comparison across bands.

Depression was associated with decreased high
synchronization connections (>0.7) across all bands,
particularly in theta (d=-0.30) and delta (d=-0.29).
Conversely, low synchronization connections (<0.4) showed
significant increases, especially in theta (d=0.35). This shift
indicates less coordinated neural activity, potentially
reflecting network dysregulation underlying depressive
symptoms.

Theta band [9] demonstrated the most consistent effects
across metrics, suggesting relevance to depression
identification. The effect size gradient (Figure 2) shows the
differences from delta to beta bands. Also, the standard
deviation of coherence values was reduced in depression
across all bands (d=-0.19 to -0.26), indicating more uniform
connectivity patterns in MDD patients.
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(Figure 2) Depression-related changes in EEG coherence
metrics across frequency bands.

3.2 Classification Performance

SVM classification achieved promising results, with band-
specific patterns. Interestingly, the beta band showing the
weakest statistical effects yielded the best classification
performance (Table 1). This highlights that, features
characterizing group-level differences (theta band) may
differ from those with optimal discriminative value for
individual classification (beta band). Classification metrics
showed progressive improvement from delta to beta
frequencies, contrasting with statistical findings where
stronger effects appeared in lower frequency bands.

(Table 1) SVM Classification Performance Metrics Across
Frequency Bands

Frequency Accuracy | Precision | Recall | F1-Score
Band
Delta (1-4) 7220 5280 64.30 67.96
Theta (4-8) 72.69 5344 66.72 59.33
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Alpha (8-13)
Beta (13-30)

78.05
8328

6173
69.26

6948
79.14

65.36
7384

A key limitation of this study is the reliance on coherence
measures, which capture only linear relationships between
signals. In the future, we will incorporate directional
connectivity measures to provide a more comprehensive
characterization of network disruptions in depression.

4, Conclusion

In this study, we present compelling evidence that EEG
coherence patterns can vary significantly between depression
(MDD) and healthy control patients. Our study showed
reduced global coherence across all frequency bands,
particularly in the delta and theta bands. Furthermore, we
noticed the strongest statistical effects in lower frequency
bands, and our classification performance with SVM
achieved the best performance on the beta band features with
an accuracy of 83.28%. This suggests that different aspects
of coherence data contribute to the neurophysiological
understanding of depression and suggests that coherence
could serve as a potentially reliable tool for depression
detection. In the future, we will incorporate directional
connectivity measures to better characterize network
disruptions in depression.
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