

신진학자 워크숍

논문집

Annual Symposium of

KIPS 2024

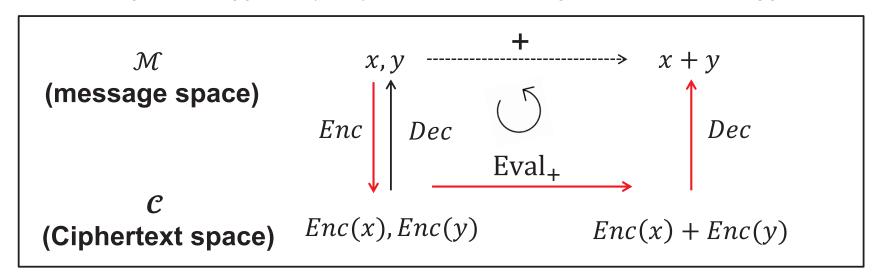
개인정보 보호를 위한 동형암호화된 머신러닝 연구

이주희 교수 (성신여자대학교)

개인정보 보호를 위한 동형암호화된 머신러닝 연구

2024.5.24.

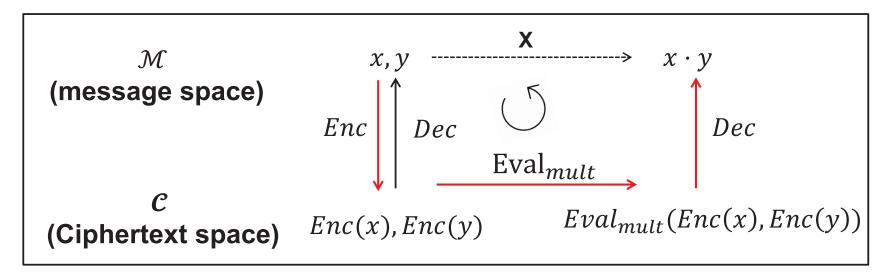
Sungshin Women's University


Joohee Lee

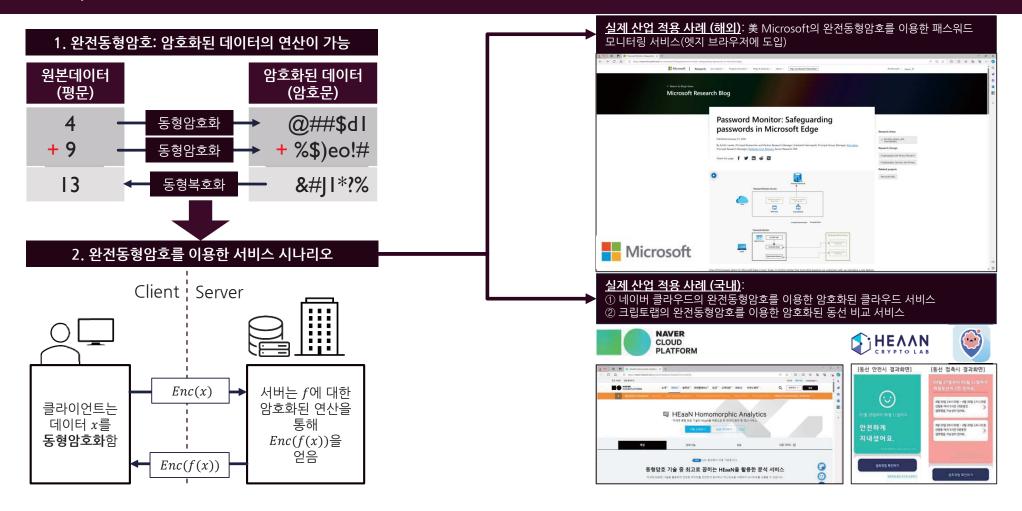
CONTENTS

- Fully Homomorphic Encryption
- Brief Intro for a study "Privacy-Preserving Fair Learning of Support Vector Machine with Homomorphic Encryption (WWW'22)"
- Brief Intro for an on-going study: Privacy-Preserving Natural Language Processing with Homomorphic Encryption

(FULLY) HOMOMORPHIC ENCRYPTION


- Homomorphic Encryption (HE) enables homomorphic evaluation over encrypted data without decryption (2009~)
 - E.g. from Enc(x) and Enc(y) compute Enc(x+y)
- Somewhat Homomorphic Encryption (SHE) : support a limited number of operations
- Fully Homomorphic Encryption (FHE): Can evaluate any function on encrypted data

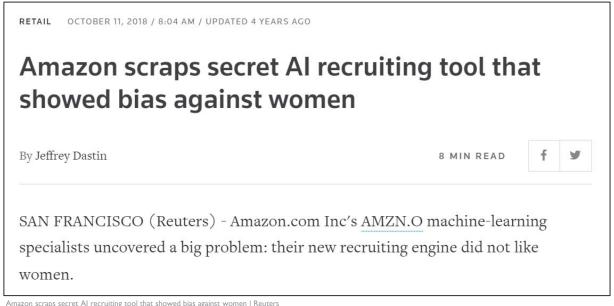
3


(FULLY) HOMOMORPHIC ENCRYPTION

- Homomorphic Encryption (HE) enables homomorphic evaluation over encrypted data without decryption (2010~)
 - E.g. from Enc(x) and Enc(y) compute Enc(x+y)
- Somewhat Homomorphic Encryption (SHE): support a limited number of operations
- Fully Homomorphic Encryption (FHE): Can evaluate any function on encrypted data

4

(FULLY) HOMOMORPHIC ENCRYPTION



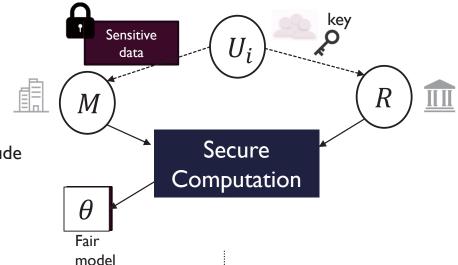
VARIANTS OF LATTICE-BASED HE SCHEMES

Scheme	Message Space	Operation	Packing	Bootstrapping
Brakerski-Gentry-Vaikuntanathan (BGV) Brakerski/Fan-Vercauteren (B/FV)	Finite field \mathbb{Z}_p	Modular (mod p) arithmetic	Yes	Optional
Ducas and Micciancio (FHEW) Chillotti-Gama-Georgieva-Izabachene (TFHE)	Single bit $\{0,1\}$	Boolean (XOR,AND)	No	Default
Cheon-Kim-Kim-Song (CKKS)	Real/complex numbers \mathbb{R} , \mathbb{C}	Approximate (fixed-point) arithmetic	Yes	Optional

Brief Intro for a study "Privacy-Preserving Fair Learning of Support Vector Machine with Homomorphic Encryption (WWW'22)" Saerom Park, Junyoung Byun, Joohee Lee

SCENARIO: FAIR LEARNING FOR AI

- Automatic decision from AI can lead to practical harms to a specific group.
 - Alert: the ML model can have bias without discriminatory intent (i.e., disparate impact).
- Fair training can help to correct algorithmic bias in the learning process!
- However, fair training also requires sensitive variables to identify groups.


[WWW'22] PRIVACY-PRESERVING FAIR LEARNING OF SUPPORT VECTOR MACHINE WITH HOMOMORPHIC ENCRYPTION

• U_i : i-th user

• *M*:modeler

• R:regulator

Assumption : *M*, *R* do not collude

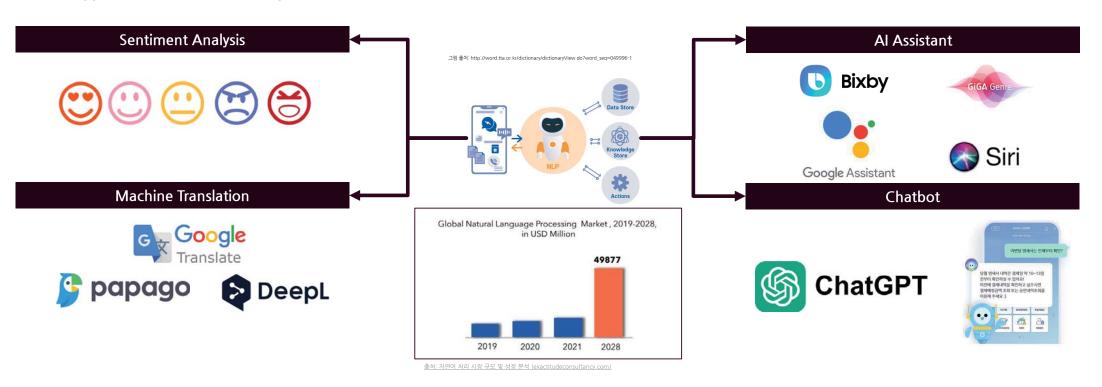


Kilbertus et al.'s Solution

- General
- Secure computation with secure Multi-Party Computation (MPC)
- *M*, *R* interactively computes the output

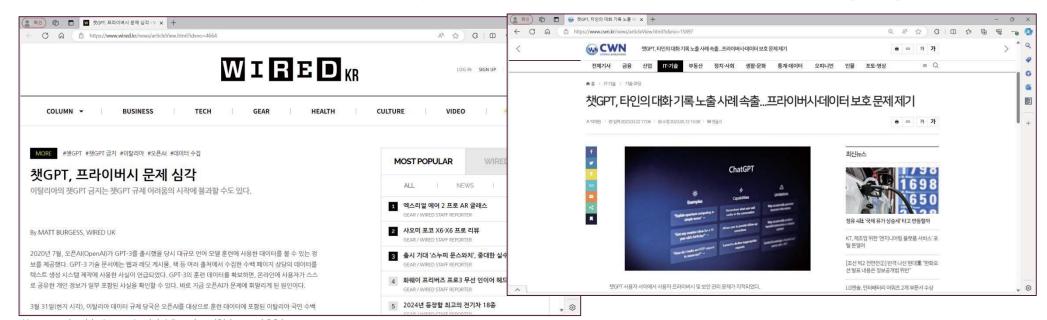
Our Solution

- Focus on Support Vector Machine (SVM)
- Secure computation with approximate Homomorphic Encryption (HE)
 - HE enables computations over encrypted data
- M conducts homomorphic computations <u>all by itself</u>



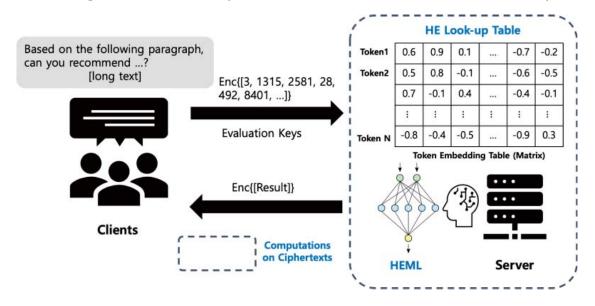
10

Brief Intro for an on-going study: Privacy-Preserving Natural Language Processing with Homomorphic Encryption


NATURAL LANGUAGE PROCESSING

- Natural Language Processing (NLP)
 - One of the major fields of artificial intelligence that studies and implements human language phenomena so that they can be imitated using machines such as computers.
 - Applications: Sentiment Analysis, Al Assistant, Machine Translation, Chatbot, etc.

PRIVACY ISSUES IN NLP


- Privacy Issues in NLP
 - Many applications of natural language processing use user-generated data.
 - Sensitive user data such as gender and age can be extracted from text data [CNC18]
 - Recent research has shown that 50-70% of input text data can be recovered from text embeddings [SR20]

PRIVACY-PRESERVING NATURAL LANGUAGE PROCESSING WITH HOMOMOR PHIC ENCRYPTION

Privacy-Preserving NLP with HE

- Goal: Proposal and Implementation of an encrypted NLP operation algorithm that protects end-to-end privacy
 - To suggest an optimized HE computation for encrypted token embedding + RNN computation
 - Here, encrypted token embedding incurs <u>table look-up evaluation</u> which is a bottleneck for HE computation

SUMMARY

- Homomorphic Encryption enables computations over encrypted data
- Recent work [PBL'22] suggests an algorithm for fair ML training over encrypted data using HE
- We are also working on the problem to address the privacy issues in NLP with HE

Thank you!

Any Question?

Contact: jooheelee@sungshin.ac.kr