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Abstract 
While deep learning-based super-resolution (SR) methods have shown impressive outcomes with synthetic 

degradation scenarios such as bicubic downsampling, they frequently struggle to perform well on real-world images 
that feature complex, non-linear degradations like noise, blur, and compression artifacts. Recent efforts to address 
this issue have involved the painstaking compilation of real low-resolution and high-resolution (HR) image pairs, 
usually limited to several specific downscaling factors. To address these challenges, our work introduces a novel 
framework capable of synthesizing authentic LR images from a single given HR image by leveraging the latent 
degradation space with flow matching. Our approach generates LR images with realistic artifacts at unseen 
degradation levels, which facilitates the creation of large-scale, real-world SR training datasets. Qualitative 
assessments verify that our synthetic LR images accurately replicate real-world degradations.  

 

1. INTRODUCTION 

Image super-resolution (SR) models excel on synthetic LR–
HR pairs yet falter in the wild because bicubic-style 
degradations ignore real camera pipelines. Hand-crafted 
mixtures help but still miss real statistics, and physically 
captured datasets are costly and limited to a few discrete 
magnifications [1]. Recent learned degraders synthesize extra 
LR from small real pairs, but most lack explicit scale control 
or require paired LR at multiple scales, limiting arbitrary-scale 
SR [2]. 

We propose DegFlow, a degradation modeling framework 
that learns from a small number of discrete scales and then 
synthesizes realistic LR images at continuous, unseen scales 
using only an HR input at test time. As illustrated in Fig. 1, a 
residual autoencoder maps images to a compact latent 
preserving high-frequency structure, and a scale-conditioned 
latent flow-matching network learns a smooth trajectory fitted 
with a natural cubic spline through the training scales. At 
inference, we transport the HR latent to any target point on this 
trajectory and decode it to LR with realistic degradations. This  

 
(Fig. 1) DegFlow generates real-world LR images across 

continuous scales by modeling degradation trajectories in a 
learned latent space. The generated LR images are used to train 

arbitrary SR models for high-quality restoration. 

yields more realistic degradations than hand-crafted pipelines 
and prior learned degraders, while providing explicit, 
continuous scale control that benefits both fixed- and 
arbitrary-scale SR models. 
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2. PROPOSED METHOD 

2.1 Overview 

DegFlow follows a two‑stage pipeline: in the first stage we 
train a residual autoencoder (RAE) to obtain compact but 
detail‑preserving latents; in the second stage we learn a latent 
flow that connects latents of discrete degradation levels along 
a smooth, time‑parameterized trajectory. At test time, an HR 
image is encoded to a latent, evolved along the learned flow 
to an arbitrary timestep corresponding to the desired scale, and 
decoded to the LR image. 

 

2.2 Residual Autoencoder (RAE) 

Let 𝐼 ∈ ℝ஼ൈுൈௐ denote an HR or LR image. The encoder 

𝐸஘  maps 𝐼  to a compact latent 𝑧 ൌ 𝐸஘ሺ𝐼ሻ ∈ ℝ஼௥మൈ
ಹ
ೝ

ൈ
ೈ
ೝ  , 

where 𝑟 is the spatial compression factor. To mitigate detail 
loss resulted from this compression, we propagate multi‑scale 
encoder features to the decoder through residual skip 
connection as: 

 

𝐼መ ൌ 𝐷஘ሺ𝑧;  ℋுோሻ, 

 

where ℋுோ ൌ ሼℎுோ
ሺ௟ሻ ሽ௟ୀଵ

௅  is the hidden features on multiple 

scales, and ℎுோ
ሺ௟ሻ   denotes the hidden feature at scale level 𝑙 

among L scales.  

We train the RAE with an L1 reconstruction loss applied 
to both HR and LR inputs, while the decoder exclusively 
receives HR feature skips to preserve high‑frequency 
structure[4].  

 

2.3 Latent Flow Matching (LFM) 

Timestamping degradation. Suppose the training set 
provides discrete scales 𝑆 ൌ  ሼ𝑠௞ሽ௞ୀଵ

௠   (e.g., ሼ1,2,4ሽ ). We 
map each 𝑠௞  to a normalized timestamp 𝑡௞  ∈  ሾ0,1ሿ  via 
min–max normalization, e.g., 𝑠 ൌ  1 ↦  𝑡 ൌ  0, 𝑠 ൌ
 4 ↦  𝑡 ൌ 1. We encode each image at scale 𝑠௞ to obtain 
𝑧௧ೖ

ൌ 𝐸ఏ൫𝐼௦ೖ
൯. 

Spline trajectory. To connect ሼ𝑧௧ೖ
ሽ  we adopt a natural 

cubic spline trajectory 𝜇௧ሺ𝜖ሻ  defined piecewise on 
ሾ𝑡௞, 𝑡௞ାଵሿ with coefficients solving a tridiagonal system that 
enforces continuity of the function and its first two derivatives, 
and natural boundary conditions 𝜇ᇱᇱ

௧భ
ሺ𝜀ሻ  ൌ 𝜇ᇱᇱ

௧೘
ሺ𝜀ሻ  ൌ

 0[5].  

Conditional flow matching. We learn a velocity field 
𝑣థሺ𝑥, 𝑡ሻ  to follow the spline’s derivative 𝜇ᇱ

௧ሺ𝜀ሻ  using the 
conditional flow‑matching objective[6]: 

 

ℒ஼ிெ ൌ 𝔼௧∼𝒰ሾ଴,ଵሿ,௫~∼௣೟ሺ௫|ఢሻ,ఢ~௤ሺఢሻ‖𝑣𝜙ሺ𝑥, 𝑡ሻ െ μ௧
ᇱ ሺεሻ‖ଶ

ଶ, 

 

This objective is tractable under a deterministic path with 
zero intermediate variance, so the model directly regresses the 
target velocity along the spline.  

Taylor‑guided perceptual supervision. Intermediate 
timesteps (e.g., scales 1.532× or 3.361×) lack ground‑truth LR. 

We approximate the latent at such an intermediate 𝑡  by 
third‑order Taylor extrapolation toward the next trained 
level 𝑡௞ାଵ, decode it, and apply an image‑domain LPIPS loss 
to encourage perceptual realism around that neighborhood[7]. 

 

4. EXPERIMENTS 

 

4.1 Implementation Details 

RAE. The RAE is trained using the Adam optimizer to 
minimize the reconstruction loss. Training continues for 200k 
iterations with a cosine-annealed learning rate schedule, 
decaying from 1 ×10ିସ to 1 ×10ି଻. Each mini-batch contains 
16 randomly cropped 256 ×256 patches with random 
horizontal and vertical flips for data augmentation. 

LFM. The LFM network uses the Adam optimizer to 
minimize the CFM and LPIPS losses over 400k iterations. A 
cosine-annealed learning rate schedule decays from 2 ×10ିସ 
to 1 ×10ି଻, with mini-batches of 32 randomly cropped 256 
×256 patches and random flips. 

 

4.2 Datasets 
  Training. In all experiments, DegFlow is trained on the 
RealSR-V2 dataset, which contains paired images at 
degradation levels ×1, ×2, and ×4 from two DSLR camera 
models: Canon and Nikon. We train on Canon-train dataset 
and generate LR images from HR images of Nikon-train 
dataset. to test the robustness of our method. 

Evaluation. SR performance is evaluated on real-world 
benchmarks: RealSR. This dataset collectively covers a wide 
range of camera, scene, and degradation characteristics, 
offering a comprehensive generalization evaluation. 

 

4.3 LR Image Generation Results 

We first demonstrate the capability of our DegFlow to model 
continuous real-world degradations in latent space. In Fig. 2 
(a), we display RealSR dataset images at discrete scales (HR, 
×2, ×3, ×4). Fig. 2 (b) shows LR images generated by 
DegFlow at uniformly spaced timesteps 0 ≤t≤1, using the 
model trained on degradation levels S= {1,2,4}. Our approach 
achieves smooth and physically consistent transitions between 
scales, and the synthesized images exhibit gradual variations 
in blur and detail loss. These transitions closely match the 
characteristics of both seen levels (×2, ×4) and unseen levels 
(×3), indicating that DegFlow successfully learns a scale-
continuous degradation manifold. 

 

 
(Fig. 2) Visualization of continuous degradation. (a) Real 

images from the RealSR dataset at discrete scales (HR, ×2, 
×3, ×4). (b) DegFlow-generated intermediate degradations at 

evenly spaced timesteps 0 ≤t≤1
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4.4 Super-resolution results 

Tab. 1 demonstrates quantitative results on the RealSR ×3 
test set, comparing three models: SwinIR, HAT and MambaIR. 
First, the oracle setting is established by training on RealSR 
(×3), which directly matches the target degradation level. Next, 
SR models are trained on RealSR (×2, ×4), without using the 
target degradation level. Finally, SR models undergo training 
using synthetic LR images generated by our model (Ours), 
ranging from ×2 to ×4. Notably, our model is trained on only 
×2 and ×4 RealSR datasets, synthesizing intermediate scales 
including the target scale (×3). In the results, the SR models 
trained with our synthesized dataset consistently outperform 
those trained on RealSR (×2, ×4) achieving higher PSNR 
and SSIM values and better LPIPS. These results validate the 
effectiveness of our continuous degradation modeling 
generating realistic and scale-continuous LR images, enabling 
SR networks to generalize more effectively to unseen target 
scales.  

Displayed in Fig. 3, the fixed-scale SR (MambaIR) is 
presented, where our generated LR image evidently contribute 
to enhanced SR results over InterFlow. 

 

<Tab. 1> Fixed-scale SR results on RealSR (×3). Best and 
second-best highlighted in bold and underline. 

 

Model Train set 
Metric 

PSNR SSIM LPIPS

SwinIR 

RealSR(x3) 30.69 0.8647 0.3217

RealSR(x2, x4) 30.23 0.8597 0.3255

Ours(x2~ x4) 30.78 0.8658 0.3193

HAT 

RealSR(x3) 30.71 0.8645 0.3221

RealSR(x2, x4) 30.39 0.8607 0.3248

Ours(x2~ x4) 30.86 0.8668 0.3186

MambaIR 

RealSR(x3) 30.62 0.8636 0.3208

RealSR(x2, x4) 30.39 0.8660 0.3240

Ours(x2~ x4) 30.86 0.8686 0.3152

 

 
 

(Fig. 3) Qualitative comparisons on RealSR dataset (×3). Fixed 
scale SR results (MambaIR) with and without our synthetic 

dataset are compared. IF indicates InterFlow. 

5. CONCLUSION 
We introduce DegFlow, a novel continuous degradation 

modeling framework for real-world super-resolution. Unlike 
previous methods that rely on handcrafted degradation 
pipelines or require paired low-resolution inputs for 
generation, DegFlow learns a degradation manifold in latent 
space from only discrete real-world HR–LR pairs and 
synthesizes realistic degradations at arbitrary, unseen scales 
using only high-resolution images. By combining a residual 
autoencoder with latent flow matching, DegFlow effectively 
captures the nonlinear geometry of real-world degradations 
while maintaining explicit degradation level control. 
Experiments show that SR networks trained on our synthetic 
datasets consistently outperform those trained with existing 
generation methods in both fidelity and perceptual quality. 
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