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Abstract

While deep learning-based super-resolution (SR) methods have shown impressive outcomes with synthetic
degradation scenarios such as bicubic downsampling, they frequently struggle to perform well on real-world images
that feature complex, non-linear degradations like noise, blur, and compression artifacts. Recent efforts to address
this issue have involved the painstaking compilation of real low-resolution and high-resolution (HR) image pairs,
usually limited to several specific downscaling factors. To address these challenges, our work introduces a novel
framework capable of synthesizing authentic LR images from a single given HR image by leveraging the latent
degradation space with flow matching. Our approach generates LR images with realistic artifacts at unseen
degradation levels, which facilitates the creation of large-scale, real-world SR training datasets. Qualitative
assessments verify that our synthetic LR images accurately replicate real-world degradations.

1. INTRODUCTION /—[ Degradation Flow Matching (DegFlow) ]—\

Image super-resolution (SR) models excel on synthetic LR— Do b iea
HR pairs yet falter in the wild because bicubic-style L
degradations ignore real camera pipelines. Hand-crafted

mixtures help but still miss real statistics, and physically

captured datasets are costly and limited to a few discrete @"B' o
magnifications [1]. Recent learned degraders synthesize extra HRimage £
LR from small real pairs, but most lack explicit scale control

or require paired LR at multiple scales, limiting arbitrary-scale o

SR [2]. . . s @

We propose DegFlow, a degradation modeling framework
that learns from a small number of discrete scales and then
synthesizes realistic LR images at continuous, unseen scales - -
using only an HR input at test time. As illustrated in Fig. 1, a (Fig. 1) DegFlow generates real-world LR images across
residual autoencoder maps images to a compact latent continuous scales by modeling degrad.ation trajectories in a
preserving high-frequency structure, and a scale-conditioned learned lat.ent space. The generatt.ad LR m?ages are us.ed to train
latent flow-matching network learns a smooth trajectory fitted ) arbltrary.Sl.Q models fmf high-quality restoratlon.. )
with a natural cubic spline through the training scales. At  yields more realistic degradations than hand-crafted pipelines
inference, we transport the HR latent to any target pointon this ~ and prior learned ~degraders, while providing explicit,

trajectory and decode it to LR with realistic degradations. This ~ continuous scale control that benefits both fixed- and
arbitrary-scale SR models.
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2. PROPOSED METHOD

2.1 Overview

DegFlow follows a two-stage pipeline: in the first stage we
train a residual autoencoder (RAE) to obtain compact but
detail-preserving latents; in the second stage we learn a latent
flow that connects latents of discrete degradation levels along
a smooth, time-parameterized trajectory. At test time, an HR
image is encoded to a latent, evolved along the learned flow
to an arbitrary timestep corresponding to the desired scale, and
decoded to the LR image.

2.2 Residual Autoencoder (RAE)
Let I € RE*H*W denote an HR or LR image. The encoder

Eg maps I to a compact latent z = Egq(I) € Rcﬂxgxg’
where 7 is the spatial compression factor. To mitigate detail
loss resulted from this compression, we propagate multi-scale
encoder features to the decoder through residual skip
connection as:

i= DB(Z; “]-[HR)S

where Hyp = {hg})a I_, is the hidden features on multiple

scales, and h,(,l,)? denotes the hidden feature at scale level [
among L scales.

We train the RAE with an L1 reconstruction loss applied
to both HR and LR inputs, while the decoder exclusively
receives HR feature skips to preserve high-frequency
structure[4].

2.3 Latent Flow Matching (LFM)

Timestamping degradation. Suppose the training set
provides discrete scales S = {s }ir; (e.g.,{1,2,4}). We
map each s, to a normalized timestamp t;, € [0,1] via
min—max normalization, e.g, s= 1+» t = 0, s=
4+ t = 1. We encode each image at scale s, to obtain
ze, = Eg(Is, ).

Spline trajectory. To connect {z, } we adopt a natural
cubic spline trajectory p.(€) defined piecewise on
[tr, tr+1] with coefficients solving a tridiagonal system that
enforces continuity of the function and its first two derivatives,
and natural boundary conditions u”tl(s) = u”tm(e) =

0[s1

Conditional flow matching. We learn a velocity field
v (x,t) to follow the spline’s derivative u',(€) using the
conditional flow-matching objective[6]:

Lepy = IEt~"u[0,1],x~~pt(x|E),e~q(e)”v()b(x; t) — P-;:(S)”%a

This objective is tractable under a deterministic path with
zero intermediate variance, so the model directly regresses the
target velocity along the spline.

Taylor-guided perceptual supervision. Intermediate

timesteps (e.g., scales 1.532x or 3.361x) lack ground-truth LR.

We approximate the latent at such an intermediate t by
third-order Taylor extrapolation toward the next trained
level t;1, decode it, and apply an image-domain LPIPS loss
to encourage perceptual realism around that neighborhood[7].

4. EXPERIMENTS

4.1 Implementation Details

RAE. The RAE is trained using the Adam optimizer to
minimize the reconstruction loss. Training continues for 200k
iterations with a cosine-annealed learning rate schedule,
decaying from 1 x10™* to 1 x10~7. Each mini-batch contains
16 randomly cropped 256 x256 patches with random
horizontal and vertical flips for data augmentation.

LFM. The LFM network uses the Adam optimizer to
minimize the CFM and LPIPS losses over 400k iterations. A
cosine-annealed learning rate schedule decays from 2 x10~*
to 1 x1077, with mini-batches of 32 randomly cropped 256
%256 patches and random flips.

4.2 Datasets

Training. In all experiments, DegFlow is trained on the
RealSR-V2 dataset, which contains paired images at
degradation levels x1, %2, and x4 from two DSLR camera
models: Canon and Nikon. We train on Canon-train dataset
and generate LR images from HR images of Nikon-train
dataset. to test the robustness of our method.

Evaluation. SR performance is evaluated on real-world
benchmarks: RealSR. This dataset collectively covers a wide
range of camera, scene, and degradation characteristics,
offering a comprehensive generalization evaluation.

4.3 LR Image Generation Results

We first demonstrate the capability of our DegFlow to model
continuous real-world degradations in latent space. In Fig. 2
(a), we display RealSR dataset images at discrete scales (HR,
x2, x3, x4). Fig. 2 (b) shows LR images generated by
DegFlow at uniformly spaced timesteps 0 <t<l, using the
model trained on degradation levels S= {1,2,4}. Our approach
achieves smooth and physically consistent transitions between
scales, and the synthesized images exhibit gradual variations
in blur and detail loss. These transitions closely match the
characteristics of both seen levels (X2, x4) and unseen levels
(x3), indicating that DegFlow successfully learns a scale-
continuous degradation manifold.

% F__HR‘ LR'XZ LRx3 LR x4
: i |
g | miad _— =

%ﬂdmﬂm-ﬂ_ﬂnﬂ—l

t=0.17 t=033 t=05 t=10.67 t=0.83 t=1

(b) DegFlow
-

(Fig. 2) Visualization of continuous degradation. (a) Real
images from the RealSR dataset at discrete scales (HR, x2,
x3, x4). (b) DegFlow-generated intermediate degradations at
evenly spaced timesteps 0 <t<1
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4.4 Super-resolution results

Tab. 1 demonstrates quantitative results on the RealSR %3
test set, comparing three models: SwinIR, HAT and MambalR.
First, the oracle setting is established by training on RealSR
(%3), which directly matches the target degradation level. Next,
SR models are trained on RealSR (%2, x4), without using the
target degradation level. Finally, SR models undergo training
using synthetic LR images generated by our model (Ours),
ranging from X2 to x4. Notably, our model is trained on only
x2 and x4 RealSR datasets, synthesizing intermediate scales
including the target scale (x3). In the results, the SR models
trained with our synthesized dataset consistently outperform
those trained on RealSR (X2, <4) achieving higher PSNR
and SSIM values and better LPIPS. These results validate the
effectiveness of our continuous degradation modeling
generating realistic and scale-continuous LR images, enabling
SR networks to generalize more effectively to unseen target
scales.

Displayed in Fig. 3, the fixed-scale SR (MambalR) is
presented, where our generated LR image evidently contribute
to enhanced SR results over InterFlow.

<Tab. 1> Fixed-scale SR results on RealSR (%x3). Best and
second-best highlighted in bold and underline.

Model Train set Metric
PSNRT SSIMT LPIPS{
RealSR(3) 3069 08647 03217
Swin[R ~ RealSR(x2, x4) 3023 0.8597  0.3255
Ours(x2~ x4) 30.78  0.8658  0.3193
RealSRG3) 307108645 03221
HAT RealSR(x2, x4) 3039 0.8607  0.3248
Ours(x2~ x4) 30.86  0.8668 0.3186
RealSR(x3) 30.62  0.8636  0.3208
MambalR ~ RealSR(x2, x4) 3039 0.8660  0.3240
Ours(x2~ x4) 30.86  0.8686  0.3152

Canon_020_HR.png (a)MambalR + IF (b)MambalR + Ours

(Fig. 3) Qualitative comparisons on RealSR dataset (x3). Fixed
scale SR results (MambalR) with and without our synthetic
dataset are compared. IF indicates InterFlow.

5. CONCLUSION

We introduce DegFlow, a novel continuous degradation
modeling framework for real-world super-resolution. Unlike
previous methods that rely on handcrafted degradation
pipelines or require paired low-resolution inputs for
generation, DegFlow learns a degradation manifold in latent
space from only discrete real-world HR-LR pairs and
synthesizes realistic degradations at arbitrary, unseen scales
using only high-resolution images. By combining a residual
autoencoder with latent flow matching, DegFlow effectively
captures the nonlinear geometry of real-world degradations
while maintaining explicit degradation level control.
Experiments show that SR networks trained on our synthetic
datasets consistently outperform those trained with existing
generation methods in both fidelity and perceptual quality.
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