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Abstract— Face Super-Resolution (FSR) reconstructs high-
resolution faces from low-resolution inputs. This paper assesses 
lightweight LVLM supervision for general (Real-ESRGAN), 
blind (BSRGAN), and prior-guided (GFPGAN) pipelines. We 
run paired pipelines—with and without LVLM—on identical 
degraded inputs. Evaluation uses PSNR, SSIM, LPIPS, NIQE, 
ArcFace, and side-by-side visuals. General FSR shows negligible 
metric shifts; blind FSR is sensitive to misclassified 
degradations under LVLM tagging; prior-guided FSR yields 
small auditing benefits with limited structural change. Overall, 
LVLMs work best as validators; measurable gains require 
deeper, controllable hooks.

Keywords—face super-resolution, blind super-resolution, 
prior-guided face restoration, vision–language models, semantic 
supervision, identity preservation.

1 INTRODUCTION

Face Super-Resolution (FSR) [1], [2] reconstructs 
identity-preserving high-resolution faces from degraded 
inputs. FSR serves forensics, privacy-aware analytics, 
and video enhancement, where identity fidelity and 
artifact control are critical [1], [2]. Large Vision–
Language Models (LVLMs) [3], [4] provide image-
grounded reasoning, textual critiques, and lightweight 
quality checks that are model-agnostic and easy to insert.

FSR pipelines face coupled trade-offs among realism, 
distortion fidelity, and identity preservation [2]. General 
methods (e.g., Real-ESRGAN [1], [2]) improve textures 
but may overshoot under mismatched degradations. 
Prior-guided methods (e.g., GFPGAN [7]) stabilize 
identity but expose only coarse inference controls. Blind 
methods (e.g., BSRGAN [6]) aim for robustness yet 
remain sensitive to wrong degradation assumptions at 
test time. Prior work (LLV-FSR [5]) reports LVLM 
benefits mainly in prior-guided settings; effective scope 
and insertion points remain narrow and under-explored.

This paper assesses LVLM supervision across three 
deployed FSR families: general (Real-ESRGAN [1]), 
blind (BSRGAN [6]), and prior-guided (GFPGAN [7]). 
We run paired pipelines—FSR-only vs. FSR+LVLM—
on identical degraded inputs to isolate LVLM effects. 
LVLM acts as a degradation tagger and a quality auditor 
with bounded, family-specific knobs; we do not redesign 
model internals.

We hypothesize that LVLM helps most as a validator 
and gatekeeper, while direct steering yields mixed 
outcomes when control surfaces are coarse.

We preview the findings. General SR shows little 
change, blind SR suffers from misclassified 

degradations, and prior-guided SR gains modest 
plausibility but flat metrics. Overall, LVLM works 
better as a validator than as a controller.

The rest of this paper is organized as follows. Section 
2 reviews method families, metric and dataset rationales, 
and the LVLM design space. Section 3 details the 
experimental setup and paired procedures. Section 4 
reports results, per-family analysis, and ablations. 
Section 5 concludes with practical guidance and 
limitations.
2 RELATED WORK

2.1 FSR TAXONOMY AND TRADE-OFFS

FSR methods are commonly grouped as general, 
prior-guided, reference-based, multi-task, and blind 
approaches. They balance three objectives: (i) 
distortion fidelity (PSNR/SSIM) [2], (ii) perceptual 
realism (LPIPS/NIQE) [2], and (iii) identity 
preservation (recognition consistency). Moving 
toward realism can hurt distortion metrics; rigid priors 
preserve identity but limit editability; blind pipelines 
improve robustness yet remain sensitive to 
degradation assumptions [2].

22.1.1 GGeneral, Prior-Guided, Blind FSR 
General FSR (Real-ESRGAN) [1], [2] 

introduces realistic degradations in training with 
adversarial/perceptual objectives to stabilize 
textures under noise and compression. Strengths 
include texture realism and deployment robustness; 
weaknesses include over/under-restoration when 
test degradations diverge from the synthetic 
mixture. Inference control is limited (scale, tiling, 
mild post-filters), making external guidance 
conservative by design [1]. The safest LVLM roles 
are artifact auditing (e.g., halos/color shift) and 
panel-level accept/reject prior to saving; direct 
parameter steering is intentionally minimal to avoid 
overshoot [1].

Prior-Guided FSR (GFPGAN) [7] leverages a 
facial prior (GAN latent/encoder) to stabilize 
identity and facial structure. Rigidity yields strong 
identity but limited editability at inference; exposed 
knobs (e.g., restoration weight, upscale, 
only_center_face) are coarse and mostly trade 
stability vs. detail [7]. Prior studies (LLV-FSR) [5] 
that inject LVLM cues into prior-guided regimes 
report structural gains, yet controllability remains 
bounded by the fixed prior and narrow interfaces. 
Effective LVLM roles are safe parameter hints (e.g., 
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weight ranges, center-face on/off) and auditing 
(identity consistency, artifacts); deep semantic 
steering likely requires retraining or new hooks [5], 
[7]. 

Blind FSR (BSRGAN) [6] models unknown 
degradations via stochastic kernels, resizing, noise, 
and compression to learn resilient restoration. Its 
strength is wide-range robustness; its weakness is 
sensitivity to mis-specified degradation at test time. 
Because degradation is partially non-identifiable 
from LR alone, wrong assumptions can induce 
scale mismatch, ringing, over-smoothing, or color 
shifts [6]. LVLMs can add conservative 
degradation tags (e.g., “heavy JPEG,” “motion blur 
likely”) to route preprocessing or choose an upscale 
factor, but over-confident tags can harm 
performance; policies should favor low-risk 
defaults and limited retries [6]. 

2.2 LVLM CAPABILITIES AND SUPERVISION SIGNALS 
Modern LVLMs [3], [4] (e.g., GPT-4V, Gemini) 

perform image-grounded reasoning, generate natural-
language critiques, and emit lightweight tags (e.g., 
“ringing,” “oversharpening,” “compression 
blockiness”). They also support accept/reject QA 
workflows and can propose coarse parameter hints. 
These signals are attractive because they are model-
agnostic and inexpensive to integrate, but they are 
probabilistic and prompt-sensitive, which motivates 
conservative policies [3], [4]. 

3 EXPERIMENTAL SETUP 

3.1 ENVIRONMENT 
Table 1 shows the operating system, hardware, and 

framework used in our experiments. Fixed seeds 
ensure reproducibility across retries, while 
FP32/FP16 precision settings balance numerical 
stability with efficiency. 

<Table 1> Experimental environment configuration 
for reproducibility and consistency across runs. 

Item Spec 

OS Windows (x64) 

GPU 1 x NVIDIA (≥ 8 GB VRAM)  

Framework Python 3.10, PyTorch 2.x, CUDA 

Precision FP32, optional FP16 

Reproducibility 
Fixed seeds for data sampling and 

retries 

3.2 DATASET & METRICS 
We use FFHQ [1], [2] for its identity diversity, 

pose/expression coverage, and high-quality HR 
images that reduce label noise for recognition analysis. 
LR–HR pairs are synthesized with a Real-ESRGAN-
style degradation pipeline [1], [2] (blur → resize → 
noise → blur → JPEG), which better approximates 

real degradations than bicubic alone and stresses 
robustness to multi-stage distortions. 

To generate LR inputs, we apply a five-stage 
degradation pipeline adapted from Real-ESRGAN [1] 
[2]: 

- Kernel-1 (blur-A): random anisotropic kernel, 
size k {7,9,11}, σ [0.2,3.0] [1]. 

- Resize: random up/down/keep, scale s
[0.5,2.0], then back to target [1]. 

- Noise: Gaussian σ_n [0,15] or Poisson 
(optional grayscale channel) [1]. 

- Kernel-2 (blur-B): fresh kernel, same ranges as 
blur-A [1]. 

- Compression: JPEG quality q [30,90] [1]. 
- I/O: read HR from inputs/high_res_imgs/, 

write LR to inputs/low_res_imgs/. 
This procedure ensures realistic degradations 

while recording explicit parameter ranges for 
reproducibility. 

For evaluation, we adopt PSNR/SSIM (distortion 
fidelity), LPIPS/NIQE (perceptual realism), and 
ArcFace cosine (identity preservation). This triad 
follows common practice: PSNR/SSIM may reward 
smoothness over detail, LPIPS/NIQE track perceived 
texture quality, and recognition features capture 
identity stability under perceptual changes [2]. 
Conflicts are expected (e.g., LPIPS↓/NIQE↓ may not 
raise PSNR/SSIM); reporting all three avoids metric 
myopia [1], [2]. 

Table 2 summarizes the dataset choice, the 
identical LR inputs for both FSR-only and 
FSR+LVLM runs, the metrics reported, and the 
artifacts saved for verification. 
<Table 2> Dataset and evaluation metrics 

Aspect Setting 

Data FFHQ HR; synthetic LR from the same HR set 

Inputs Identical LR for Pure and +LVLM runs 

Outputs 
Per-model folders: pure-fsr, fsr+lvlm, side-by-

side panels 

Metrics 
PSNR↑, SSIM↑, LPIPS↓, NIQE↓, ArcFace 

Cosine↑ 

3.3 LVLM GUIDANCE DESIGN 
   LVLM supervision is lightweight and bounded. 

- Inputs: downsampled LR image, current SR 
output, 3–5 cropped face patches, and a 
compact QA summary (ArcFace, LPIPS, NIQE, 
artifact flags). 

- Outputs: (i) an audit score [0–100], (ii) 
diagnostic tags {blockiness, ringing, 
oversharpening, color shift}, and (iii) bounded 
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hints per family (see Table 4). 
- Policy: one pass plus up to R retries. Only safe 

knobs are applied; if LVLM confidence < 
τ_conf, the baseline SR is accepted without 
modification. 

This design constrains LVLM to act as an auditor 
and gatekeeper rather than an unrestricted generator. 

3.4 GENERATION PROCEDURE 
We run paired pipelines with fixed seeds for 

reproducibility. The process has three steps: 

1. Pure FSR: Run each family (general / blind / 
prior-guided) on the LR batch to obtain baseline 
SR outputs (PNG).  

2. FSR+LVLM: Run the same LR batch with 
LVLM supervision, allowing only bounded 
knobs (see Table 4) per family, producing 
+LVLM SR outputs (PNG). 

3. Artifact Saving: For each case, save side-by-side 
panels (LR | Pure | +LVLM) and a run-config 
CSV that records seeds and knob values for 
reproducibility. 

<Table 3> Allowed LVLM knobs during generation 

Family 
LVLM-allowed 

knobs 
Notes 

General 

(Real-

ESRGAN) 

mild color-balance, 

dehalo, gentle 

detail dampening 

No structure edits 

Blind 

(BSRGAN) 

×2 / ×4 scale 

switch, low 

denoise, JPEG 

deblock 

One conservative 

change only 

Prior-

guided 

(GFPGAN) 

restore-weight 

band, 

only_center_face 

toggle 

Fixed prior; small 

nudges 

Table 3 bounds LVLM’s control surface; 
differences in these limits help explain method-
specific effects. 

A unified QA schema (score 0–100, reason text) 
was applied with τ_conf = 80 and ≤1 retry. Prompts 
varied slightly by model—artifact scoring (Real-
ESRGAN), degradation tagging (BSRGAN), or mild 
parameter hints (GFPGAN)—and all outputs were 
parsed by a common evaluation script 
(vlm_quality_score) to ensure consistent, bounded 
supervision.LVLM prompt templates Configuration 

3.5 EVALUATION PROCEDURE 
Evaluation is performed offline on saved images 

with identical preprocessing: 
1. Preprocessing: Convert HR references and SR 

outputs (Pure, +LVLM) to a standardized color 
space and range. Face alignment is kept identical 
across variants. 

2. Metric Computation: From standardized tensors, 
compute PSNR, SSIM, LPIPS, NIQE, and 
ArcFace Cosine similarity. 

3. Aggregation: Report per-image metrics, compute 
family-wise means, and calculate Δ = (+LVLM − 
Pure). Tables and plots summarize the results. 

ArcFace uses the same crops for Pure and +LVLM 
to ensure fairness. All outputs are stored as lossless 
PNG in sRGB. 

4 RESULTS & DISCUSSION 

4.1 QUANTITATIVE RESULTS 
Across families, +LVLM causes consistent drops 

in blind SR (↓PSNR/SSIM, ↑LPIPS/NIQE, 
↓ArcFace), produces negligible shifts in general SR, 
and leaves prior-guided SR essentially flat on 
objective metrics. 

<Table 4 > Distortion metrics (PSNR/SSIM) 

Higher is better, bold marks the better variant within 
each family 

Method 

Group 
Variant PSNR ↑ SSIM ↑ 

Blind 

FSR 

Pure FSR 31.093 0.896 

FSR+LVLM 28.592 0.886 

General 

FSR 

Pure FSR 30.251 0.905 

FSR+LVLM 30.155 0.903 

Prior-

Guided 

FSR 

Pure FSR 30.036 0.852 

FSR+LVLM 30.036 0.852 

<Table 5> Perceptual & identity metrics 
(LPIPS/NIQE/ArcFace)  

LPIPS/NIQE: lower is better; ArcFace: higher is 
better. Bold marks the better variant within each 
family 

Method 

Group 
Variant 

LPIPS 

↓ 
NIQE ↓ 

ArcFace 

Cosine ↑ 

Blind 

FSR 

Pure FSR 0.443 5.523 0.920 

FSR+LVLM 0.524 6.176 0.876 

General 

FSR 

Pure FSR 0.474 9.422 0.909 

FSR+LVLM 0.483 9.454 0.908 
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Prior-

Guided 

FSR 

Pure FSR 0.259 5.756 0.884 

FSR+LVLM 0.259 5.737 0.883 

4.2 PER-FAMILY ANALYSIS 
For General FSR, we observed negligible changes 

between Pure FSR and FSR+LVLM. Metrics 
remained within measurement noise across all images. 
These results suggested limited advantage for LVLM 
advice over a strong upsampler. 

For Blind FSR, we observed consistent 
degradations under LVLM guidance with BSRGAN. 
We attribute the drops to limited controllability at 
inference, not to a fully black-box model. The pipeline 
exposes only coarse knobs (scale and mild post-
filters), so LVLM cues cannot steer internal priors. 
Degradation is non-identifiable in blind SR, and 
misclassification propagates to scale and filters, which 
reduces perceptual quality and identity scores. 

For Prior-Guided FSR, we observed high LVLM 
quality scores despite unchanged objective metrics. 
GFPGAN’s StyleGAN prior dominated restoration 
and constrained controllability. LVLM acted as a 
parameter tuner and auditor rather than a semantic 
controller. 

4.3 MITIGATIONS TRIED 
We increased retry counts and raised QA 

thresholds. We observed more compute and more 
artifacts without consistent gains. We reduced filters 
and used conservative color/dehalo settings. We 
observed fewer side effects but still no metric gains in 
BSRGAN. We tuned GFPGAN weight and center-
face options. We observed minor perceptual shifts 
without PSNR/SSIM changes. 

Our LVLM remained an external planner and 
auditor. Our SR models exposed only coarse knobs. 
This mismatch limited measurable improvements. 

4.4 ABLATION AND QA BEHAVIOR 
Raising thresholds increased retries with little 

benefit; lowering thresholds missed severe artifacts. 
Moderate correction strengths worked best; 
aggressive settings amplified artifacts. Conservative 
policies are recommended. 

4.5 LIMITATION AND THREATS TO VALIDITY 
This study limits scope to three FSR categories and 

a single dataset subset. This study relies on API-based 
LVLMs without access to internal embeddings. This 
study controls parameters via coarse interfaces that 
restrict semantic adjustments. 

External validity may suffer under different 
degradations or domains. Construct validity may 
depend on the chosen QA prompts and scoring rules. 

Future replications should report prompts, seeds, and 
code for reproducibility. 

The literature often reports LVLM gains under 
prior-guided setups. Those setups expose priors and 
structures that accept semantic cues. Our pipelines 
expose limited hooks, which constrains control. 

General SR baselines already recover textures 
effectively. LVLM advice yields small or neutral 
changes when headroom is low. Blind SR depends on 
accurate degradation inference. Misclassification 
compounds errors through the whole chain. 

GFPGAN preserves identity with a fixed 
generative prior. LVLM approval reflects perceived 
plausibility, not metric change. This gap explains high 
LVLM QA versus flat PSNR/SSIM. 

Our system treats BSRGAN as black-box-like at 
the interface level. Internal degradation embeddings 
or priors are not exposed to LVLM signals. This 
interface mismatch limits corrective actions to scale 
and mild post-filters, so measurable gains are unlikely 
without deeper coupling. 

4.6 PRACTICAL GUIDANCE AND FUTURE DIRECTIONS 
Use LVLM mainly as a gatekeeper: 

reference/consistency checks, artifact screening, and 
fail-case retries. Avoid over-steering generation when 
model knobs are coarse. Future work should expose 
controllable hooks; align degradation tags with 
internals, and couple QA signals with training or 
adaptation. 

5 CONCLUSION 
We compared FSR-only against FSR+LVLM across 

general, blind, and prior-guided pipelines. General SR 
shows near-neutral changes, suggesting little headroom 
for external advice. Blind SR degrades when guidance 
misclassifies degradations and steers coarse knobs. 
Prior-guided SR benefits from auditing but resists 
structural change under fixed priors. Across families, 
LVLM works best as a validator and gatekeeper, not a 
direct controller. Practical use should prioritize 
reference checks, artifact screening, and safe retries. 
Consistent metric gains will likely require deeper, 
controllable hooks inside SR models. 
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