ACK 2025 st=ttxrls| =2%! (323 23)

Assessing Face Super-Resolution with Semantic
Guidance from Large Vision—Language Models

Tae-Seung Kim", Hyeopgeon Lee, Young-Woon Kim
Dept. of Bigdata, Seoul Gangseo Campus of Korea Polytechnic College

Abstract— Face Super-Resolution (FSR) reconstructs high-
resolution faces from low-resolution inputs. This paper assesses
lightweight LVLM supervision for general (Real-ESRGAN),
blind (BSRGAN), and prior-guided (GFPGAN) pipelines. We
run paired pipelines—with and without LVLM—on identical
degraded inputs. Evaluation uses PSNR, SSIM, LPIPS, NIQE,
ArcFace, and side-by-side visuals. General FSR shows negligible
metric shifts; blind FSR is sensitive to misclassified
degradations under LVLM tagging; prior-guided FSR yields
small auditing benefits with limited structural change. Overall,
LVLMs work best as validators; measurable gains require
deeper, controllable hooks.
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1 INTRODUCTION

Face Super-Resolution (FSR) [1], [2] reconstructs
identity-preserving high-resolution faces from degraded
inputs. FSR serves forensics, privacy-aware analytics,
and video enhancement, where identity fidelity and
artifact control are critical [1], [2]. Large Vision—
Language Models (LVLMs) [3], [4] provide image-
grounded reasoning, textual critiques, and lightweight
quality checks that are model-agnostic and easy to insert.

FSR pipelines face coupled trade-offs among realism,
distortion fidelity, and identity preservation [2]. General
methods (e.g., Real-ESRGAN [1], [2]) improve textures
but may overshoot under mismatched degradations.
Prior-guided methods (e.g., GFPGAN [7]) stabilize
identity but expose only coarse inference controls. Blind
methods (e.g., BSRGAN [6]) aim for robustness yet
remain sensitive to wrong degradation assumptions at
test time. Prior work (LLV-FSR [5]) reports LVLM
benefits mainly in prior-guided settings; effective scope
and insertion points remain narrow and under-explored.

This paper assesses LVLM supervision across three
deployed FSR families: general (Real-ESRGAN [1]),
blind (BSRGAN [6]), and prior-guided (GFPGAN [7]).
We run paired pipelines—FSR-only vs. FSR+LVLM—
on identical degraded inputs to isolate LVLM effects.
LVLM acts as a degradation tagger and a quality auditor
with bounded, family-specific knobs; we do not redesign
model internals.

We hypothesize that LVLM helps most as a validator
and gatekeeper, while direct steering yields mixed
outcomes when control surfaces are coarse.

We preview the findings. General SR shows little
change, blind SR suffers from misclassified

degradations, and prior-guided SR gains modest
plausibility but flat metrics. Overall, LVLM works
better as a validator than as a controller.

The rest of this paper is organized as follows. Section
2 reviews method families, metric and dataset rationales,
and the LVLM design space. Section 3 details the
experimental setup and paired procedures. Section 4
reports results, per-family analysis, and ablations.
Section 5 concludes with practical guidance and
limitations.

2 RELATED WORK

2.1 FSR TAXONOMY AND TRADE-OFFS

FSR methods are commonly grouped as general,
prior-guided, reference-based, multi-task, and blind
approaches. They balance three objectives: (i)
distortion fidelity (PSNR/SSIM) [2], (ii) perceptual
realism (LPIPS/NIQE) [2], and (iii) identity
preservation (recognition consistency). Moving
toward realism can hurt distortion metrics; rigid priors
preserve identity but limit editability; blind pipelines
improve robustness yet remain sensitive to
degradation assumptions [2].

2.1.1 General, Prior-Guided, Blind FSR

General FSR (Real-ESRGAN) [1], [2]
introduces realistic degradations in training with
adversarial/perceptual  objectives to stabilize
textures under noise and compression. Strengths
include texture realism and deployment robustness;
weaknesses include over/under-restoration when
test degradations diverge from the synthetic
mixture. Inference control is limited (scale, tiling,
mild post-filters), making external guidance
conservative by design [1]. The safest LVLM roles
are artifact auditing (e.g., halos/color shift) and
panel-level accept/reject prior to saving; direct
parameter steering is intentionally minimal to avoid
overshoot [1].

Prior-Guided FSR (GFPGAN) [7] leverages a
facial prior (GAN latent/encoder) to stabilize
identity and facial structure. Rigidity yields strong
identity but limited editability at inference; exposed
knobs (e.g., restoration weight, upscale,
only center face) are coarse and mostly trade
stability vs. detail [7]. Prior studies (LLV-FSR) [5]
that inject LVLM cues into prior-guided regimes
report structural gains, yet controllability remains
bounded by the fixed prior and narrow interfaces.
Effective LVLM roles are safe parameter hints (e.g.,
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weight ranges, center-face on/off) and auditing
(identity consistency, artifacts); deep semantic
steering likely requires retraining or new hooks [5],

[7].

Blind FSR (BSRGAN) [6] models unknown
degradations via stochastic kernels, resizing, noise,
and compression to learn resilient restoration. Its
strength is wide-range robustness; its weakness is
sensitivity to mis-specified degradation at test time.
Because degradation is partially non-identifiable
from LR alone, wrong assumptions can induce
scale mismatch, ringing, over-smoothing, or color
shifts [6]. LVLMs can add conservative
degradation tags (e.g., “heavy JPEG,” “motion blur
likely”) to route preprocessing or choose an upscale
factor, but over-confident tags can harm
performance; policies should favor low-risk
defaults and limited retries [6].

2.2 LVLM CAPABILITIES AND SUPERVISION SIGNALS

Modern LVLMs [3], [4] (e.g., GPT-4V, Gemini)
perform image-grounded reasoning, generate natural-
language critiques, and emit lightweight tags (e.g.,
“ringing,” “oversharpening,” “compression
blockiness”). They also support accept/reject QA
workflows and can propose coarse parameter hints.
These signals are attractive because they are model-
agnostic and inexpensive to integrate, but they are
probabilistic and prompt-sensitive, which motivates
conservative policies [3], [4].

EXPERIMENTAL SETUP

3.1 ENVIRONMENT

Table 1 shows the operating system, hardware, and
framework used in our experiments. Fixed seeds
ensure  reproducibility across  retries, while
FP32/FP16 precision settings balance numerical
stability with efficiency.

<Table 1> Experimental environment configuration
for reproducibility and consistency across runs.

Item Spec

(ON) Windows (x64)

GPU 1 x NVIDIA (= 8 GB VRAM)
Framework Python 3.10, PyTorch 2.x, CUDA
Precision FP32, optional FP16
Reproducibility Fixed seeds for data sampling and

retries

3.2 DATASET & METRICS

We use FFHQ [1], [2] for its identity diversity,
pose/expression coverage, and high-quality HR

images that reduce label noise for recognition analysis.

LR—HR pairs are synthesized with a Real-ESRGAN-
style degradation pipeline [1], [2] (blur — resize —
noise — blur — JPEG), which better approximates
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real degradations than bicubic alone and stresses
robustness to multi-stage distortions.

To generate LR inputs, we apply a five-stage
degradation pipeline adapted from Real-ESRGAN [1]

[2]:
- Kernel-1 (blur-A): random anisotropic kernel,
size k&{7,9,11}, 6=[0.2,3.0] [1].
- Resize: random up/down/keep, scale s&
[0.5,2.0], then back to target [1].
- Noise: Gaussian ¢ n<[0,15] or Poisson
(optional grayscale channel) [1].
- Kernel-2 (blur-B): fresh kernel, same ranges as
blur-A [1].
- Compression: JPEG quality q=[30,90] [1].
- I/0: read HR from inputs/high res imgs/,
write LR to inputs/low_res _imgs/.
This procedure ensures realistic degradations

while recording explicit parameter ranges for
reproducibility.

For evaluation, we adopt PSNR/SSIM (distortion
fidelity), LPIPS/NIQE (perceptual realism), and
ArcFace cosine (identity preservation). This triad
follows common practice: PSNR/SSIM may reward
smoothness over detail, LPIPS/NIQE track perceived
texture quality, and recognition features capture
identity stability under perceptual changes [2].
Conlflicts are expected (e.g., LPIPS |/NIQE| may not
raise PSNR/SSIM); reporting all three avoids metric
myopia [1], [2].

Table 2 summarizes the dataset choice, the
identical LR inputs for both FSR-only and
FSR+LVLM runs, the metrics reported, and the
artifacts saved for verification.

<Table 2> Dataset and evaluation metrics

Aspect Setting

Data FFHQ HR; synthetic LR from the same HR set
Inputs Identical LR for Pure and +LVLM runs

Per-model folders: pure-fsr, fsr+lvim, side-by-
Outputs

side panels

PSNRT, SSIM{, LPIPS|, NIQE|, ArcFace

Metrics

Cosine?

33 LVLM GUIDANCE DESIGN

LVLM supervision is lightweight and bounded.

- Inputs: downsampled LR image, current SR
output, 3-5 cropped face patches, and a
compact QA summary (ArcFace, LPIPS, NIQE,
artifact flags).

- Outputs: (i) an audit score [0-100], (ii)
diagnostic  tags  {blockiness,  ringing,
oversharpening, color shift}, and (iii) bounded
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hints per family (see Table 4).

- Policy: one pass plus up to R retries. Only safe
knobs are applied; if LVLM confidence <
t_conf, the baseline SR is accepted without
modification.

This design constrains LVLM to act as an auditor
and gatekeeper rather than an unrestricted generator.

34 GENERATION PROCEDURE

We run paired pipelines with fixed seeds for
reproducibility. The process has three steps:

1. Pure FSR: Run each family (general / blind /
prior-guided) on the LR batch to obtain baseline
SR outputs (PNG).

2. FSR+LVLM: Run the same LR batch with
LVLM supervision, allowing only bounded
knobs (see Table 4) per family, producing
+LVLM SR outputs (PNG).

3. Artifact Saving: For each case, save side-by-side
panels (LR | Pure | +LVLM) and a run-config
CSV that records seeds and knob values for
reproducibility.

<Table 3> Allowed LVLM knobs during generation

LVLM-allowed

Family Notes
knobs
General mild color-balance,
(Real- dehalo, gentle No structure edits
ESRGAN) detail dampening

x2 / x4 scale

Blind switch, low One conservative
(BSRGAN) | denoise, JPEG change only
deblock
. restore-weight
Prior- ) )
) band, Fixed prior; small
guided
only center face nudges
(GFPGAN)
toggle

Table 3 bounds LVLM’s control surface;
differences in these limits help explain method-
specific effects.

A unified QA schema (score 0—-100, reason text)
was applied with t_conf = 80 and <1 retry. Prompts
varied slightly by model—artifact scoring (Real-
ESRGAN), degradation tagging (BSRGAN), or mild
parameter hints (GFPGAN)—and all outputs were
parsed by a common evaluation script
(vim_quality score) to ensure consistent, bounded
supervision.LVLM prompt templates Configuration
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35 EVALUATION PROCEDURE

Evaluation is performed offline on saved images
with identical preprocessing:

1. Preprocessing: Convert HR references and SR
outputs (Pure, +LVLM) to a standardized color
space and range. Face alignment is kept identical
across variants.

2. Metric Computation: From standardized tensors,
compute PSNR, SSIM, LPIPS, NIQE, and
ArcFace Cosine similarity.

3. Aggregation: Report per-image metrics, compute
family-wise means, and calculate A = (+LVLM —
Pure). Tables and plots summarize the results.

ArcFace uses the same crops for Pure and +LVLM
to ensure fairness. All outputs are stored as lossless
PNG in sRGB.

RESULTS & DISCUSSION

4.1 QUANTITATIVE RESULTS

Across families, +LVLM causes consistent drops
in blind SR (|PSNR/SSIM, 1LPIPS/NIQE,
| ArcFace), produces negligible shifts in general SR,
and leaves prior-guided SR essentially flat on
objective metrics.

<Table 4 > Distortion metrics (PSNR/SSIM)

Higher is better, bold marks the better variant within
each family

Method

Variant PSNR 1 SSIM 1t
Group
Blind Pure FSR 31.093 0.896
FSR FSR+LVLM 28.592 0.886
General Pure FSR 30.251 0.905
FSR FSR+LVLM 30.155 0.903
Prior- Pure FSR 30.036 0.852
Guided

FSR+LVLM 30.036 0.852
FSR

<Table 5> Perceptual & identity metrics
(LPIPS/NIQE/ArcFace)

LPIPS/NIQE: lower is better;, ArcFace: higher is
better. Bold marks the better variant within each

family

Method LPIPS ArcFace
Variant NIQE | )
Group l Cosine 1
Blind Pure FSR 0.443 5.523 0.920
FSR FSR+LVLM 0.524 6.176 0.876
General Pure FSR 0.474 9.422 0.909
FSR FSR+LVLM 0.483 9.454 0.908
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Prior- Pure FSR 0.259 5.756 0.884
Guided

FSR+LVLM 0.259 5.737 0.883
FSR

4.2 PER-FAMILY ANALYSIS

For General FSR, we observed negligible changes
between Pure FSR and FSR+LVLM. Metrics
remained within measurement noise across all images.
These results suggested limited advantage for LVLM
advice over a strong upsampler.

For Blind FSR, we observed consistent
degradations under LVLM guidance with BSRGAN.
We attribute the drops to limited controllability at
inference, not to a fully black-box model. The pipeline
exposes only coarse knobs (scale and mild post-
filters), so LVLM cues cannot steer internal priors.
Degradation is non-identifiable in blind SR, and
misclassification propagates to scale and filters, which
reduces perceptual quality and identity scores.

For Prior-Guided FSR, we observed high LVLM
quality scores despite unchanged objective metrics.
GFPGAN’s StyleGAN prior dominated restoration
and constrained controllability. LVLM acted as a
parameter tuner and auditor rather than a semantic
controller.

4.3 MITIGATIONS TRIED

We increased retry counts and raised QA
thresholds. We observed more compute and more
artifacts without consistent gains. We reduced filters
and used conservative color/dehalo settings. We
observed fewer side effects but still no metric gains in
BSRGAN. We tuned GFPGAN weight and center-
face options. We observed minor perceptual shifts
without PSNR/SSIM changes.

Our LVLM remained an external planner and
auditor. Our SR models exposed only coarse knobs.
This mismatch limited measurable improvements.

4.4  ABLATION AND QA BEHAVIOR

Raising thresholds increased retries with little
benefit; lowering thresholds missed severe artifacts.
Moderate correction  strengths worked  best;
aggressive settings amplified artifacts. Conservative
policies are recommended.

4.5 LIMITATION AND THREATS TO VALIDITY

This study limits scope to three FSR categories and
a single dataset subset. This study relies on API-based
LVLMs without access to internal embeddings. This
study controls parameters via coarse interfaces that
restrict semantic adjustments.

External validity may suffer under different
degradations or domains. Construct validity may
depend on the chosen QA prompts and scoring rules.

Future replications should report prompts, seeds, and
code for reproducibility.

The literature often reports LVLM gains under
prior-guided setups. Those setups expose priors and
structures that accept semantic cues. Our pipelines
expose limited hooks, which constrains control.

General SR baselines already recover textures
effectively. LVLM advice yields small or neutral
changes when headroom is low. Blind SR depends on
accurate degradation inference. Misclassification
compounds errors through the whole chain.

GFPGAN preserves identity with a fixed
generative prior. LVLM approval reflects perceived
plausibility, not metric change. This gap explains high
LVLM QA versus flat PSNR/SSIM.

Our system treats BSRGAN as black-box-like at
the interface level. Internal degradation embeddings
or priors are not exposed to LVLM signals. This
interface mismatch limits corrective actions to scale
and mild post-filters, so measurable gains are unlikely
without deeper coupling.

4.6 PRACTICAL GUIDANCE AND FUTURE DIRECTIONS

Use LVLM mainly as a gatekeeper:
reference/consistency checks, artifact screening, and
fail-case retries. Avoid over-steering generation when
model knobs are coarse. Future work should expose
controllable hooks; align degradation tags with
internals, and couple QA signals with training or
adaptation.

5 CONCLUSION

We compared FSR-only against FSR+LVLM across
general, blind, and prior-guided pipelines. General SR
shows near-neutral changes, suggesting little headroom
for external advice. Blind SR degrades when guidance
misclassifies degradations and steers coarse knobs.
Prior-guided SR benefits from auditing but resists
structural change under fixed priors. Across families,
LVLM works best as a validator and gatekeeper, not a
direct controller. Practical use should prioritize
reference checks, artifact screening, and safe retries.
Consistent metric gains will likely require deeper,
controllable hooks inside SR models.
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