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Abstract 

Deep learning (DL) has become a powerful tool for plant leaf disease classification, enabling early and 

accurate diagnosis to support precision agriculture. However, these models are highly vulnerable to adversarial 

attacks, where small, imperceptible perturbations can mislead classifiers into producing incorrect predictions. Such 

vulnerabilities are especially concerning in real-world agricultural settings, where AI is deployed through drones 

and IoT devices to support farmers in the supply chain. To address this challenge, we propose an encoder-based 

defense mechanism built on a ConvNeXt V2 backbone combined with a convolutional autoencoder (CAE) for 

adversarial denoising. ConvNeXt V2 serves as a modern and efficient classifier for plant disease images, while the 

CAE acts as a defense layer to remove perturbations generated by state-of-the-art attacks, specifically the Fast 

Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD), across multiple perturbation magnitudes. 

Experimental results on a benchmark plant leaf disease dataset show that our model achieves over 95% accuracy 

on clean images. Under adversarial conditions, accuracy drops by up to 40%, but the proposed CAE defense 

restores 20–25% accuracy, significantly improving robustness. These findings confirm that combining ConvNeXt 

V2 with encoder-based defenses provides a reliable framework for adversarial robust plant disease classification. 

 

1. Introduction 

Agriculture remains one of the most vulnerable sectors to 

pests and diseases, with the Food and Agriculture 

Organization (FAO) estimating that 20–40% of global crop 

yields are lost annually due to such factors [1]. These losses 

not only threaten farmer livelihoods but also intensify global 

food insecurity in the face of a rapidly growing population. 

In recent years, the integration of DL models into smart 

farming systems has shown great promise for tackling these 

challenges. By enabling automated disease detection from 

plant leaf images captured through drones, IoT devices, and 

field sensors, DL models can provide farmers with early and 

accurate diagnostic tools, ensuring timely intervention and 

better resource management [2]. 

However, the reliability of these systems is increasingly 

threatened by adversarial attacks, where imperceptible 

perturbations are added to images, causing models to 

misclassify while remaining invisible to humans. While such 

vulnerabilities have been widely studied in domains like 

medical imaging and autonomous driving, their impact on 

agricultural AI has only recently been explored [3][4]. Plant 

leaf images, with subtle textures and natural variations, are 

particularly prone to adversarial noise that can mimic disease 

symptoms, making classifiers fragile in real-world 

environments such as drone-based monitoring or IoT-enabled 

supply chains. Ensuring robust AI models is therefore 

essential for food security and farmer trust. Yet, despite some 

work on adversarial training and attack strategies in plant 

disease recognition [3][5], robust defense mechanisms 

remain underexplored. Existing approaches often rely on 

outdated backbones like VGG or on simple detection 

methods that fail against stronger attacks such as PGD. 

To bridge this gap, we propose a defense framework for 

plant leaf disease classification. Our method integrates 

ConvNeXt V2 [19], a state-of-the-art CNN that incorporates 

transformer-inspired designs, with an encoder-based 

convolutional autoencoder (CAE) that denoises adversarial 

inputs before classification. This hybrid framework addresses 

multiple attack scenarios by cleaning perturbed images 

generated using the FGSM and PGD at varying perturbation 

magnitudes. Experiments on a benchmark plant disease 

dataset demonstrate that while adversarial attacks can reduce 
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classification accuracy by up to 40%, our defense mechanism 

is able to restore 20–25% of the lost accuracy, achieving 

strong robustness while maintaining high performance on 

clean images. These contributions highlight the potential of 

encoder-based defenses to ensure secure, trustworthy, and 

practical deployment of DL models in agricultural systems. 

2. Related work 

Recent surveys and defenses underscore that deep models 

for medical images are highly allowing to gradient-based 

attacks and benefit from dedicated robustness strategies. 

Dong et al. provide a comprehensive taxonomy and 

benchmarks for adversarial attacks/defenses in medical 

imaging, while newer works explore two-phase and vision-

transformer oriented defenses that mix adversarial learning 

with input filtering or model design adaptations [6]. These 

studies motivate domain-aware defenses but remain largely 

confined to medical modalities [7, 8].  

Plant disease classification with CNNs/Transformers. 

Contemporary plant-vision systems increasingly adopt strong 

backbones (ViT, ConvNeXt) and hybrid CNN–Transformer 

designs, improving accuracy and robustness under 

challenging field conditions [9]. Recent papers examine 

ViT/MoE pipelines “in the wild,” hybrid ConvNet–ViT 

architectures [10], and ConvNeXt/ViT comparisons across 

leaf datasets evidence that modern backbones outperform 

legacy CNNs used in many earlier works [11]. Yet, explicit 

adversarial robustness remains underexplored relative to 

classification accuracy. 

Autoencoder-based defenses. Denoising autoencoders are 

a practical, model-agnostic line of defense that can suppress 

adversarial perturbations before classification [12]. Recent 

methods couple denoising with detection or apply task-aware 

autoencoders to restore clinically relevant structure; however, 

such encoder-based defenses have not been systematically 

applied to agricultural leaf images with modern backbones 

[13]. Our study fills this gap by pairing a ConvNeXt V2 

classifier with a convolutional autoencoder tailored to 

FGSM/PGD perturbations on plant leaves. 

 

3. Methodology 

The proposed framework, illustrated in Figure 1, integrates 

a modern ConvNeXt V2 [19] classifier with an encoder-

based CAE defense to improve adversarial robustness in 

plant leaf disease classification. The workflow is organized 

into three main components: classification backbone, 

adversarial attack setup, and encoder-based defense. For 

classification, we adopt ConvNeXt V2, initialized with 

ImageNet weights and fine-tuned on the preprocessed 

PlantVillage dataset [14]. ConvNeXt V2 was selected 

because it combines convolutional efficiency with 

transformer-inspired design elements, offering strong 

baseline accuracy and robustness. The model is trained on 

clean leaf images to establish the reference performance for 

subsequent adversarial and defense evaluations. 

To evaluate robustness, we generate adversarial images 

from clean samples using two well-known gradient-based 

methods: the FGSM and PGD. FGSM represents a single-

step perturbation, while PGD applies iterative updates to 

craft stronger attacks. Both are tested across multiple 

perturbation magnitudes (ε values), simulating increasingly 

challenging adversarial conditions. These attacks serve as the 

primary means to evaluate the vulnerability of ConvNeXt V2 

and to provide training data for the CAE. The CAE serves as 

the defense mechanism. It is trained separately from the 

classifier using paired adversarial–clean images, learning to 

suppress adversarial perturbations while retaining critical 

disease features. During evaluation, adversarial leaf images 

are passed through the CAE to produce reconstructed images, 

which are then classified by ConvNeXt V2. This structure 

allows a direct comparison among clean classification, 

attacked performance, and defended predictions.  

Figure 1: Proposed ConvNeXt V2 with CAE defense for adversarially robust plant leaf disease classification. 
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By combining ConvNeXt V2 with an encoder-based CAE, 

the methodology provides a modular and reproducible 

approach: the classifier ensures high baseline accuracy on 

clean data, adversarial attacks quantify vulnerability, and the 

CAE restores robustness by filtering perturbations. This dual-

path design (Figure 1) makes it possible to rigorously assess 

adversarial resilience while maintaining classification 

performance on plant leaf diseases. 

4. Result 

We evaluated our method on the PlantVillage dataset [14], 

which contains approximately 25,000 leaf images covering 

15 classes from three crops. Pepper bell includes Bacterial 

spot and Healthy; potato includes Early blight, Late blight, 

and Healthy; and tomato includes Bacterial spot, Early blight, 

Late blight, Leaf Mold, Septoria leaf spot, Spider mites, 

Target Spot, Yellow Leaf Curl Virus, Mosaic Virus, and 

Healthy. Before training, all images were resized to 224×224, 

normalized with ImageNet mean and standard deviation, and 

augmented using rotation, horizontal/vertical flipping, and 

Gaussian blur to improve generalization. For model training, 

we fine-tuned ConvNeXt V2 with ImageNet pretrained 

weights using the AdamW optimizer, an initial learning rate 

of 1e-4, and cosine annealing scheduling. Training was 

conducted for up to 100 epochs on clean images and 250 

epochs in the adversarial setting. All experiments were 

executed on an NVIDIA GPU with 16 GB memory and a 

system equipped with 64 GB RAM, ensuring efficient 

training and evaluation at scale. 

Figure 2 shows the training and validation loss curves of 

ConvNeXt V2 on clean images. The model achieved stable 

convergence with a final training loss of 0.4358 and 

validation loss of 0.454 after 100 epochs. Figure 3 presents 

the corresponding training process under adversarial attack 

simulation (FGSM and PGD perturbations), where the model 

required longer convergence and showed higher losses 

(training loss 0.7779, validation loss 0.7793 after 250 

epochs), confirming the destabilizing effect of adversarial 

noise. 

Table 1 reports the comparative performance of our 

method against baseline ConvNeXt V2 and recent state-of-

the-art models. The clean ConvNeXt V2 classifier achieved 

95% accuracy on PlantVillage. Under adversarial conditions, 

accuracy dropped by nearly 40% (95 → 55%), highlighting 

the severity of the threat. By applying the CAE defense, 

accuracy was restored by 20– 25% (to ~80%), 

demonstrating the effectiveness of encoder-based denoising 

in recovering classification performance.  

Finally, results demonstrate that adversarial attacks can 

significantly degrade the performance of even modern 

backbones like ConvNeXt V2, reducing accuracy by nearly 

40%. Our proposed defense mechanism with a convolutional 

autoencoder effectively mitigates this impact, restoring up to 

25% accuracy while preserving high performance on clean 

images. Compared to other state-of-the-art backbones such as 

Swin Transformer and EfficientNetV2, the ConvNeXt V2 + 

CAE framework achieves superior robustness and a 

favorable trade-off between clean and defended accuracy. 

5. Conclusion 

In this study, we proposed an encoder-based defense 

mechanism for adversarially robust plant leaf disease 

classification. By integrating ConvNeXt V2 as a modern 

classification backbone with a CAE for adversarial denoising, 

our framework effectively mitigates the vulnerability of deep 

models to gradient-based attacks. Experiments on the 

PlantVillage dataset showed that while adversarial 

Figure 2: Training Vs Validation Loss curve for base model. 

Figure 3: Training vs validation loss curve with CAE. 

Model Clean Accuracy

FGSM/PGD 

Accuracy (No 

Defense)

Accuracy with 

CAE Defense
Notes

ConvNeXt V2 (ours) 95.00% 55.00% 80.20%
CAE restores 

~25%

Swin Transformer 

[15]
94.10% 57.80% 78.40%

Transformer 

baseline

EfficientNetV2 [16] 93.30% 54.90% 76.80%
Lightweight 

CNN

Hybrid CNN+ViT 

[17]
92.60% 52.70% 75.10%

Reported 2024 

model

MobileNet V3 [18] 90.20% 48.30% 70.00%
Legacy 

benchmark

Table 1: Performance comparison under adversarial attacks. 
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perturbations reduced accuracy by up to 40%, the CAE 

defense successfully restored 20–25% of the lost 

performance, achieving strong robustness without sacrificing 

clean accuracy. These findings highlight the importance of 

combining powerful classifiers with dedicated defense layers 

for reliable AI in agriculture. In future work, we aim to 

extend this approach to real-field datasets, additional attack 

types, and lightweight variants suitable for deployment on 

edge devices such as drones and IoT platforms. 
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