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Abstract

Deep learning (DL) has become a powerful tool for plant leaf disease classification, enabling early and
accurate diagnosis to support precision agriculture. However, these models are highly vulnerable to adversarial
attacks, where small, imperceptible perturbations can mislead classifiers into producing incorrect predictions. Such
vulnerabilities are especially concerning in real-world agricultural settings, where Al is deployed through drones
and loT devices to support farmers in the supply chain. To address this challenge, we propose an encoder-based
defense mechanism built on a ConvNeXt V2 backbone combined with a convolutional autoencoder (CAE) for
adversarial denoising. ConvNeXt V2 serves as a modern and efficient classifier for plant disease images, while the
CAE acts as a defense layer to remove perturbations generated by state-of-the-art attacks, specifically the Fast
Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD), across multiple perturbation magnitudes.
Experimental results on a benchmark plant leaf disease dataset show that our model achieves over 95% accuracy
on clean images. Under adversarial conditions, accuracy drops by up to 40%, but the proposed CAE defense
restores 20-25% accuracy, significantly improving robustness. These findings confirm that combining ConvNeXt
V2 with encoder-based defenses provides a reliable framework for adversarial robust plant disease classification.

leaf images, with subtle textures and natural variations, are

Agriculture remains one of the most vulnerable sectors to
pests and diseases, with the Food and Agriculture
Organization (FAO) estimating that 20-40% of global crop
yields are lost annually due to such factors [1]. These losses
not only threaten farmer livelihoods but also intensify global
food insecurity in the face of a rapidly growing population.
In recent years, the integration of DL models into smart
farming systems has shown great promise for tackling these
challenges. By enabling automated disease detection from
plant leaf images captured through drones, 10T devices, and
field sensors, DL models can provide farmers with early and
accurate diagnostic tools, ensuring timely intervention and
better resource management [2].

However, the reliability of these systems is increasingly
threatened by adversarial attacks, where imperceptible
perturbations are added to images, causing models to
misclassify while remaining invisible to humans. While such
vulnerabilities have been widely studied in domains like
medical imaging and autonomous driving, their impact on
agricultural Al has only recently been explored [3][4]. Plant

particularly prone to adversarial noise that can mimic disease
symptoms, making classifiers fragile in real-world
environments such as drone-based monitoring or loT-enabled
supply chains. Ensuring robust Al models is therefore
essential for food security and farmer trust. Yet, despite some
work on adversarial training and attack strategies in plant
disease recognition [3][5], robust defense mechanisms
remain underexplored. Existing approaches often rely on
outdated backbones like VGG or on simple detection
methods that fail against stronger attacks such as PGD.

To bridge this gap, we propose a defense framework for
plant leaf disease classification. Our method integrates
ConvNeXt V2 [19], a state-of-the-art CNN that incorporates
transformer-inspired  designs, with an encoder-based
convolutional autoencoder (CAE) that denoises adversarial
inputs before classification. This hybrid framework addresses
multiple attack scenarios by cleaning perturbed images
generated using the FGSM and PGD at varying perturbation
magnitudes. Experiments on a benchmark plant disease
dataset demonstrate that while adversarial attacks can reduce
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classification accuracy by up to 40%, our defense mechanism
is able to restore 20-25% of the lost accuracy, achieving
strong robustness while maintaining high performance on
clean images. These contributions highlight the potential of
encoder-based defenses to ensure secure, trustworthy, and
practical deployment of DL models in agricultural systems.

2. Related work

Recent surveys and defenses underscore that deep models
for medical images are highly allowing to gradient-based
attacks and benefit from dedicated robustness strategies.
Dong et al. provide a comprehensive taxonomy and
benchmarks for adversarial attacks/defenses in medical
imaging, while newer works explore two-phase and vision-
transformer oriented defenses that mix adversarial learning
with input filtering or model design adaptations [6]. These
studies motivate domain-aware defenses but remain largely
confined to medical modalities [7, 8].

Plant disease classification with CNNs/Transformers.
Contemporary plant-vision systems increasingly adopt strong
backbones (ViT, ConvNeXt) and hybrid CNN-Transformer
designs, improving accuracy and robustness under
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[13]. Our study fills this gap by pairing a ConvNeXt V2
classifier with a convolutional autoencoder tailored to
FGSM/PGD perturbations on plant leaves.

3. Methodology

The proposed framework, illustrated in Figure 1, integrates
a modern ConvNeXt V2 [19] classifier with an encoder-
based CAE defense to improve adversarial robustness in
plant leaf disease classification. The workflow is organized
into three main components: classification backbone,
adversarial attack setup, and encoder-based defense. For
classification, we adopt ConvNeXt V2, initialized with
ImageNet weights and fine-tuned on the preprocessed
PlantVillage dataset [14]. ConvNeXt V2 was selected
because it combines convolutional efficiency with
transformer-inspired  design elements, offering strong
baseline accuracy and robustness. The model is trained on
clean leaf images to establish the reference performance for
subsequent adversarial and defense evaluations.

To evaluate robustness, we generate adversarial images
from clean samples using two well-known gradient-based
methods: the FGSM and PGD. FGSM represents a single-
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Figure 1: Proposed ConvNeXt V2 with CAE defense for adversarially robust plant leaf disease classification.

challenging field conditions [9]. Recent papers examine
ViT/MoE pipelines “in the wild,” hybrid ConvNet-ViT
architectures [10], and ConvNeXt/ViT comparisons across
leaf datasets evidence that modern backbones outperform
legacy CNNs used in many earlier works [11]. Yet, explicit
adversarial robustness remains underexplored relative to
classification accuracy.

Autoencoder-based defenses. Denoising autoencoders are
a practical, model-agnostic line of defense that can suppress
adversarial perturbations before classification [12]. Recent
methods couple denoising with detection or apply task-aware
autoencoders to restore clinically relevant structure; however,
such encoder-based defenses have not been systematically
applied to agricultural leaf images with modern backbones

step perturbation, while PGD applies iterative updates to
craft stronger attacks. Both are tested across multiple
perturbation magnitudes (¢ values), simulating increasingly
challenging adversarial conditions. These attacks serve as the
primary means to evaluate the vulnerability of ConvNeXt V2
and to provide training data for the CAE. The CAE serves as
the defense mechanism. It is trained separately from the
classifier using paired adversarial-clean images, learning to
suppress adversarial perturbations while retaining critical
disease features. During evaluation, adversarial leaf images
are passed through the CAE to produce reconstructed images,
which are then classified by ConvNeXt V2. This structure
allows a direct comparison among clean classification,
attacked performance, and defended predictions.
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By combining ConvNeXt V2 with an encoder-based CAE,
the methodology provides a modular and reproducible
approach: the classifier ensures high baseline accuracy on
clean data, adversarial attacks quantify vulnerability, and the
CAE restores robustness by filtering perturbations. This dual-
path design (Figure 1) makes it possible to rigorously assess
adversarial resilience while maintaining classification
performance on plant leaf diseases.

4, Result

We evaluated our method on the PlantVillage dataset [14],
which contains approximately 25,000 leaf images covering
15 classes from three crops. Pepper bell includes Bacterial
spot and Healthy; potato includes Early blight, Late blight,
and Healthy; and tomato includes Bacterial spot, Early blight,
Late blight, Leaf Mold, Septoria leaf spot, Spider mites,
Target Spot, Yellow Leaf Curl Virus, Mosaic Virus, and
Healthy. Before training, all images were resized to 224x224,
normalized with ImageNet mean and standard deviation, and
augmented using rotation, horizontal/vertical flipping, and
Gaussian blur to improve generalization. For model training,
we fine-tuned ConvNeXt V2 with ImageNet pretrained
weights using the AdamW optimizer, an initial learning rate
of le-4, and cosine annealing scheduling. Training was
conducted for up to 100 epochs on clean images and 250
epochs in the adversarial setting. All experiments were
executed on an NVIDIA GPU with 16 GB memory and a
system equipped with 64 GB RAM, ensuring efficient
training and evaluation at scale.

Figure 2 shows the training and validation loss curves of
ConvNeXt V2 on clean images. The model achieved stable
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Figure 2: Training Vs Validation Loss curve for base model.

convergence with a final training loss of 0.4358 and
validation loss of 0.454 after 100 epochs. Figure 3 presents
the corresponding training process under adversarial attack
simulation (FGSM and PGD perturbations), where the model
required longer convergence and showed higher losses
(training loss 0.7779, validation loss 0.7793 after 250
epochs), confirming the destabilizing effect of adversarial
noise.

Table 1 reports the comparative performance of our
method against baseline ConvNeXt V2 and recent state-of-
the-art models. The clean ConvNeXt V2 classifier achieved
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Figure 3: Training vs validation loss curve with CAE.

Table 1: Performance comparison under adversarial attacks.

FESUHRED Accuracy with
Model Clean Accuracy | Accuracy (No CAE Defense Notes
Defense)
ConvNext V2 (ours)|  95.00% 55.00% 80.20% CZASE/ restores
. 0
Swin Transformer 94.10% 57.80% 78.40% Trans.former
[15] baseline
EfficientNetV2 [16] 93.30% 54.90% 76.80% (';'S‘R“"Ve'gm
Hybrid CNN+WIT 92.60% 52.70% 75.10% Reported 2024
[17] model
MobileNet V3 [18] 90.20% 48.30% 7000% |98y
benchmark

95% accuracy on PlantVillage. Under adversarial conditions,
accuracy dropped by nearly 40% (95 — 55%), highlighting
the severity of the threat. By applying the CAE defense,
accuracy was restored by 20- 25% (to ~80%),
demonstrating the effectiveness of encoder-based denoising
in recovering classification performance.

Finally, results demonstrate that adversarial attacks can
significantly degrade the performance of even modern
backbones like ConvNeXt V2, reducing accuracy by nearly
40%. Our proposed defense mechanism with a convolutional
autoencoder effectively mitigates this impact, restoring up to
25% accuracy while preserving high performance on clean
images. Compared to other state-of-the-art backbones such as
Swin Transformer and EfficientNetV2, the ConvNeXt V2 +
CAE framework achieves superior robustness and a
favorable trade-off between clean and defended accuracy.

5. Conclusion

In this study, we proposed an encoder-based defense
mechanism for adversarially robust plant leaf disease
classification. By integrating ConvNeXt V2 as a modern
classification backbone with a CAE for adversarial denoising,
our framework effectively mitigates the vulnerability of deep
models to gradient-based attacks. Experiments on the
PlantVillage dataset showed that while adversarial
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perturbations reduced accuracy by up to 40%, the CAE
defense successfully restored 20-25% of the lost
performance, achieving strong robustness without sacrificing
clean accuracy. These findings highlight the importance of
combining powerful classifiers with dedicated defense layers
for reliable Al in agriculture. In future work, we aim to
extend this approach to real-field datasets, additional attack
types, and lightweight variants suitable for deployment on
edge devices such as drones and loT platforms.
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