클라우드 환경을 위한 멀티 디바이스 Bootstrapping 최적화

하회리¹, 정헌희¹, 백윤흥¹ ¹서울대학교 전기정보공학부

{wrha, hhjung}@sor.snu.ac.kr, ypaek@snu.ac.kr

Multi-device Bootstrapping Optimization for Cloud Computing

Whoi Ree Ha¹, Heonhui Jung¹, Yunheung Paek¹

Dept. of Electrical and Computer Engineering and Inter-university Semiconductor Research Center,

Seoul National University

요 약

클라우드 제공자들은 이미 여러 가속 기기들을 통해 더 좋은 가속 환경을 하지만 많은 연구들은 단일 기기 최적화에 중점을 두고 있다. 특히 동형암호에서의 연산 병목이 되는 Bootstrapping 은 굉장히 큰 연산 overhead 를 발생시킨다. 따라서 멀티 디바이스 클라우드 환경에 맞춰 Bootstrapping 연산을 모델링하고 최적화하였으며, 실험결과 최대 1.84 배의 speedup을 달성하였다.

1. Introdcution

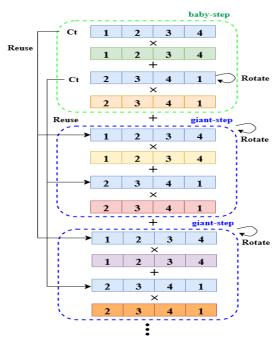
머신러닝 서비스의 인기 증가는 프라이버시 문제를 야기했습니다. 동형암호는 암호화된 데이터에 대한 연산을 허용함으로써 프라이버시를 보존합니다. 이에 따라 사용자는 민감한 비암호화 데이터를 클라우드에 전송할 필요가 없습니다[1].

하지만 동형암호는 연산량을 굉장히 증가시키기 때문에 이를 효율적으로 최적화하는 부분이 필수입니다. 특히 Bootstrapping은 noisy 한 암호화된 데이터를 새로운, noise 적은 암호 데이터로 변환함으로써 더 많은 동형암호 연산을 수행할 수 있게 해주는 핵심 연산입니다. 하지만 Bootstrapping은 많은 연산량을 요구하며 대부분의 동형암호 application 의 연산 병목점이 됩니다.[2],[3]

기존 연구들은 단일 기기에서의 가속에 집중하지만, 주요 클라우드 제공자들은 더 좋은 가속을 위해 여러 대의 가속기를 제공합니다. [4],[5] 이러한 멀티 디바이 스 환경은 아직 충분히 다루어지지 않은 새로운 최적 화 과제를 제시합니다.

이 연구에서는 멀티 디바이스 클라우드 환경에서의 가속을 위해 Bootstrapping 연산을 최적화합니다. 기존 연구에서는 최적화를 위해 Bootstrapping 을 Baby-step Giant-step 으로 구분하여 연산을 수행하는데, 이 때 사 용하는 configuration 에 따라서 연산의 수와 병렬성이 바뀌게 됩니다. 이 Baby-step Giant-step 을 수학적으로 모델링하여 멀티 디바이스 환경에 최적화합니다. 이 를 통해 최대 1.84 배의 speedup을 달성합니다.

2. Baby-step Giant-step



(그림 1) Baby-step Giant-step 설명

Bootstrapping 에서 여러 연산을 수행하지만 그 중 가장 비중이 높은 건 Discrete Fourier Transform (DFT) 연산입니다. DFT 연산은 다수의 버터플라이 연산을 포함하며, 이는 여러 암호문 곱셈 및 회전을 요구합 니다. 특히 암호문의 회전은 많은 연산량을 요구합니 다. 따라서 DFT 연산의 암호문 회전을 최소화하기 위 해 baby-step giant-step 알고리즘이 도입되었습니다. 이 알고리즘은 (그림 1)과 같이 baby-step 과 giant-step 두 부분으로 나눕니다. Baby-step 은 원래 행렬 곱셈의 작 은 부분을 직접 수행합니다. 이는 데이터 순서를 유 지하기 위해 입력 암호문의 회전을 필요로 합니다. Giant-step 은 baby-step 에서 회전된 입력을 재사용하여, 나머지 계산을 baby-step 의 크기로 나눕니다. 각 입력 암호문이 회전되는 baby-step 과 대조적으로, 각 giantstep 은 마지막에 한 번의 회전만을 요구하여, 계산 비 용이 많이 드는 회전 연산을 최소화합니다.

3. Baby-step Giant-step Optimization

기본적으로 위 설명과 같이 baby-step 에서 더 많은 입력을 사용하게 되면 giant-step 의 개수가 줄어들게 됩니다. 전체 연산을 baby-step 에서 사용된 입력 수에 맞춰서 나눠지기 때문입니다. 따라서 baby-step 의 크 기에 따라서 전체 동형암호 연산 수가 달라집니다. 이를 $bs \times gs = C$ 라고 모델링 할 수 있습니다. bs 는 baby-step 의 크기이고, gs 는 giant-step 의 수, C 는 constant 입니다. 하지만 멀티 디바이스 환경에서는 연 산의 병렬성과 data-dependency 로 인한 기기간의 통신 overhead 가 발생합니다.

단일 기기에서는 baby-step 이 단 한 번 수행되지만 baby-step 의 입력들이 giant-step 에서 재사용되기 때문 에 한 기기에서 baby-step 을 수행하여 회전된 암호문 들을 다른 기기들에게 broadcasting 해주는것보다 각 기기가 baby-step 을 수행하는 것이 더 효율적입니다. 따라서 각 기기에서 발생하는 연산 수는 $bs + \frac{c}{N \times bs}$ 라 고 정의할 수 있습니다. 이 때 N은 사용 가능한 연산 기기의 수입니다. 또한 giant-step 을 수행한 후 모든 데이터들의 합을 수행해야 되며 이는 기기간의 통신 을 필요로 합니다. 이 때 통신은 $log_2(N)$ 번 발생하게 됩니다. 따라서 최종적으로 이 연산을

$$T_{bs} + \frac{C}{N \times T_{comm}} + T_{comm} \times log_2(N)$$

 $T_{bs} + \frac{C}{N imes T_{bs}} + T_{comm} imes log_2(N)$ 과 같이 모델링 할 수 있습니다. 이 때 T_{bs} 는 babystep 을 수행하는데 걸리는 시간, T_{comm} 은 기기간의 통 신 시간입니다. 위 식을 사용하여 각 N 에 따라서 최 적의 baby-step 크기를 결정하여 멀티 디바이스 환경 에 따라 최적화할 수 있습니다.

4. Evaluation

State-of-the-art 연구인 Hydra[6]에서 사용한 환경을 사용하였습니다. 실험 환경은 x86 cpu 를 가지고 여러 Alveo U280 FPGA 를 가진 클라우드 환경을 사용했습 니다. 이 때, 기기간의 통신 bandwidth 는 100Gb/s 입니 다. 동형암호 parameter 는 Polynomial degree= 216 이며 logQ=1260, logPQ=1692 입니다. 또한 C는 32768 입니다.

# of Devices	Naïve (s)	Ours (s)	Speedup
1	0.014297	0.014297	1.00
2	0.008049	0.007447	1.08
4	0.004975	0.004072	1.22
8	0.003488	0.002448	1.42
16	0.002795	0.001522	1.84

<표 1> 실험 결과

<표 1>은 baby-step giant-step 최적화를 하지 않고 기존 단일 기기 가속에서 사용된 baby-step giant-step configuration 을 사용했을 때의 결과 (naïve)와 최적화 를 수행한 결과를 비교하였습니다. 이 때 우리 연구 는 최대 1.84 배의 speedup을 보였습니다. 또한 사용할 수 있는 기기가 늘어남에 따라 더 좋은 speedup 을 보 여줍니다. 이는 기기가 늘어남에 따라 통신 accumulation 에서의 수행 시간이 상대적으로 늘어나기 때문입니다. 이를 우리는 최적화를 통하여 최소화하 여 더 많은 가속기를 사용할 수 있는 환경에서 더 좋 은 성능을 보였습니다.

5. Conclusion

이 연구는 클라우드가 제공하는 멀티 디바이스 환 경에 맞춰서 동형암호 연산의 가장 핵심적인 연산인 Bootstrapping 연산을 최적화하였습니다. 기존 연구들 은 단일 기기 환경을 가정하여 baby-step giant-step 을 정하여 사용하지만, 사용하는 기기, 통신 bandwidth 에 따라서 가속효율이 바뀔 수 있는 멀티 디바이스 환경 에서는 효율적이지 않습니다. 따라서 우리는 멀티 디 바이스 환경에 맞춰 baby-step giant-step 알고리즘을 모 델링하고, 이 모델을 사용하여 최적화하였습니다. 실 험 결과 최대 1.84 배의 speedup 을 보였습니다.

Acknowledgement

이 논문은 2025 년도 BK21 FOUR 정보기술 미래인재 교육연구단, 정부(과학기술정보통신부)의 재원으로 한 국연구재단(RS-2023-00277326), 정부(과학기술정보통신 부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.RS-2023-00277060, 개방형 엣지 AI 반도체 설계 및 SW 플랫폼 기술개발).

IDEC 에서 EDA Tool 를 지원받아 수행하였습니다.

참고문헌

- [1] Cheon, Jung Hee, et al. "Introduction to homomorphic encryption and schemes." Protecting Privacy through Homomorphic Encryption. Cham: Springer International Publishing, 2022. 3-28.
- [2] Kim, Sangpyo, et al. "Bts: An accelerator for bootstrappable fully homomorphic encryption." Proceedings of the 49th annual international symposium on computer architecture. 2022.

- [3] Agrawal, Rashmi, Anantha Chandrakasan, and Ajay Joshi. "Heap: A fully homomorphic encryption accelerator with parallelized bootstrapping." 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA). IEEE, 2024.
- [4] "F2." *Amazon Web Services, Inc.*, 2024, aws.amazon.com/ec2/instance-types/f2/.
- [5] "NP Size Series Azure Virtual Machines." *Microsoft.com*, 24 Oct. 2024, learn.microsoft.com/en-us/azure/virtual-machines/sizes/fpga-accelerated/np-series?tabs=sizebasic.
- [6] Yang, Yinghao, et al. "Hydra: Scale-out FHE Accelerator Architecture for Secure Deep Learning on FPGA." 2025 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2025.