UML과 라즈베리파이를 이용한 유해 가스 모니터링 및 알림 시스템

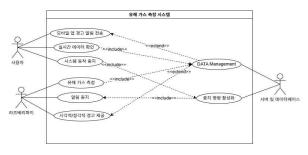
이석윤, 조인철, 김진수, 이민규, 조영범, 김선원, 이은서* 국립경국대학교 컴퓨터공학과

20201107@student.anu.ac.kr, jju161613@naver.com, kjjsss13@naver.com, tmxpqm@naver.com, d6587@naver.com, ssun981014@naver.com, eslee@gknu.ac.kr

Hazardous Gas Monitoring and Alert System Using UML and Raspberry Pi

Seok-Yun Lee, In-Cheol Jo, Jin-Su Kim, Min-gyu Lee, Yeong-Beom Jo, Seon-Won Kim, Eun-ser Lee* Dept. of Computer Science and Engineering, Gyeongkuk National University

요 약


본 논문은 라즈베리파이와 CO, CO2, VOC(HCHO) 센서를 이용해 5초마다 유해가스를 측정하고, 서버데이터베이스에 저장하는 시스템을 설계와 구현하였다. 앱은 저장된 데이터를 기반으로 위험 알림을제공하며, 누적 데이터 조회할 수 있다. 각 센서별 LED, 경고 스피커, 버튼으로 물리적 인터페이스와앱 알림을 통해서 사용자 편의성을 제공하였다.

1. 서론

업무, 학습, 여가 활동 등으로 인해 현대인들의 실내 거주 시간이 지속적으로 늘어나고 있다. 특히 미국에서 실시된 조사 결과, 성인들이 하루 중 88%에 달하는 시간을 실내에서 보낸다.[1] 따라서 실내 공기질과 환경 조건은 개인의 건강 상태에 직접적인 영향을 미치는 핵심 요소로 인식되고 있다. 특히 일산화탄소(CO), 이산화탄소(CO2) 무색무취로 인지하기 어렵기 때문에, 유해가스의 실시간 측정 및 관리가 매우 중요하다. 이러한 이유로 효과적인 실시간모니터링 시스템의 필요성이 커지고 있다. 따라서여러 유해가스 측정하는 시스템을 필요로 한다.[2]본 시스템은 세 가지 가스 센서를 활용해 위험 알림을 제공한다. 시스템의 하드웨어는 새집을 연상시키는 디자인으로 제작했다.

2. 본론

2.1 Use Case 설계

(그림 1 유스케이스 사진)

시스템의 기능적 요구사항을 정의하기 위해 사용자, 라즈베리파이, 그리고 서버 및 데이터베이스를 액터로 설정했다. 라즈베리파이는 가스를 측정하고 경고를 발생시키며, 사용자는 모바일 앱을 통해 데이터를 원격으로 확인하고 시스템 동작 및 알림을 제어하는 핵심 역할을 수행한다. DATA Management 유스케이스를 중심으로 데이터조회 및 측정 기능이 포함되며, 위험 상황이 발생했을 때만 조건에 따라 모바일 경고 알림 기능이 확장되도록 설계했다.

2.2 사용자 인터페이스 설계

(그림 2) 앱 화면

사용자 인터페이스는 사용자의 모바일 단말기에서 동작하며 서버와 연동하여 동작하는 Flutter앱을 활용하여 구현하였다. 앱 화면에서 하단 내비게이션 바를 통해 세 가지 메뉴로 구성되어 있다. 또한, 측정한 값이 임계값을 넘어가면 앱 알림을 보낸다. 메인 화면에서는 세 가지 센서의 실시간 데이터와 센

^{*} 교신저자 이은서(eslee@gknu.ac.kr)

[※] 본 연구는 산업통상자원부 및 한국산업기술진흥원에서 지원하는 국립경국대학교 창의융합형공학인재양성지원사업의 연구 결과로 수행되었음

서별 위험도를 나타내는 이모티콘을 확인할 수 있고, 센서 카드를 클릭하면 각 가스 수치가 사용자에게 미치는 영향을 상세히 볼 수 있다. 하단의 알림 중지 버튼을 통해 알림 기능을 활성화하거나 비활성화할 수 있으며, 그래프 화면에서는 실시간 데이터를 차트로 시각화하여 변동성을 한눈에 파악할 수 있다. 기록 메뉴에서는 달력 기능을 통해 원하는 날짜의 누적 데이터를 편리하게 조회한다.

2.3 소프트웨어 설계 및 구현

센서 데이터는 Python으로 5초마다 측정하여 MyS QL 데이터베이스에 저장한다. 누적 데이터는 시간 단위로 집계되며, 현재 시각의 시(hour) 값이 이전에 저장된 시각보다 이후일 때 해당 시점의 센서 데이터를 별도의 데이터베이스 테이블에 자동으로 저장하도록 구현하였다. 임계값을 초과하면 각 센서별 LED와 경고 스피커가 작동하며, 알림의 활성화와 비활성화는 토글 버튼과 서버, DB 연동을 통해 제어한다. LED 상태와 알림 기능은 멀티스레드로 관리되어 실시간으로 반영된다.[3]

2.4 하드웨어 설계 및 구현

라즈베리파이와 MCP3008 ADC를 이용해 CO, VO C(HCHO) 센서를 측정하며, CO₂ 센서는 별도의 UA RT/시리얼 통신 방식으로 측정한다.[4] 각 센서에는 경고를 직관적으로 확인할 수 있도록 세 개의 LED가 배치되어 있으며, 알림 활성화 여부를 표시하는 별도의 LED도 함께 구성되어 있다. 경고 상황이 발생하면 스피커를 통해 즉각적으로 알림을 제공하고, 사용자는 버튼을 이용해 알림 기능을 손쉽게 켜거나끌 수 있다. 3D프린터를 사용하여 시스템의 외관 케이스를 제작하였으며, 케이스 설계 시 센서를 위한 통풍구와 물리적인 인터페이스를 포함했다.

(그림 3) 하드웨어 사진

3. 결론

3.1 연구 결과

본 시스템은 실내 환경에서 안정적으로 동작하며, 센서 데이터의 실시간 수집과 알림 기능이 정상적으로 동작함을 확인했다. 또한, 날짜별 누적 데이터 조회와 실시간 수치 변화, 알림 활성화/비활성화 기능, 각 센서별 LED와 경고 스피커를 사용하여 사용자 요구를 충족시켜 연구의 목표를 달성하였다. 3.2 시스템의 장점 및 한계

저비용 하드웨어와 오픈소스 소프트웨어로 저렴하 게 생산을 할 수 있다. 데이터를 실시간 모니터링이 가능하며, 추가로 직관적인 인터페이스를 통해 사용 자들이 손쉽게 이용할 수 있다. 다만, 센서 정확도와 네트워크 환경에 따라 데이터 신뢰성에 제한이 있을 수 있고 전원공급이 필수적이다.

3.3 기대효과 및 여러 활용방안

본 시스템은 라즈베리파이 기반의 저비용 설계를통해 실내 공기질을 실시간으로 모니터링할 수 있어, 다양한 환경에서 활용이 가능하다. 신축 건물의페인트 유해 독소 등을 측정하기 위한 VOC(HCHO), 실내 CO₂ 농도 모니터링을 통한 환기 필요성알림, 공공시설에서는 밀집 공간의 공기 질 관리 등다양한 용도로 사용할 수 있다. 또한, 산업 현장에서는 유해가스 누출 감지 및 안전 관리 체계 강화에도적용할 수 있다.

4. 향후 연구 및 개선 방향

센서 정확도 향상, 내부 배터리 연결을 통한 외부 환경에서 사용 가능, AI를 통한 이상 데이터 분석기 능 추가[5], 다양한 IoT기기와의 연동을 통해 연구 및 개선을 진행하고자 한다.

참고문헌

[1] 이선용, "Extremely Selective and Rapid Detection of Reducing Gases Using Noble Metal-based Chemoresistive Gas Sensors.", 국내박사학위논문, 서울대학교 대학원, 2023, 서울 [2] G. Karuna, R. P. Ram Kumar, Steven Gopaldas, Vasista Parvathaneni, Teddu Lokesh, "Air Quality and Hazardous Gas Detection using IoT for Household and Industrial Areas", E3S Web of Conferences, 제391권, pp. 01146, 2023. [3] Alexander Metzner, Jurgen Niehaus, "MSparc: Multithreading in Real-Time Architectures", Journal of Universal Computer Science, 제6권, 제10호, pp. 1034-1051, 2000.

[4] Winsen Electronics Technology Co., Ltd., "MH-Z19B NDIR CO2 Module Manual", Winsen 공식 웹사이트

[5] 하민호, Saba Arshad, 서승원, 박태형, "AI 기반 반도체 증착 공정의 이상 감지 시스템 개발", 제어로봇시스템학회 논문지, 대전컨벤션센터, 2024, 1,313 - 1,320