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요       약 

As telecommunications advance toward next-generation networks beyond 5G, they encounter the growing 

challenge of accommodating more users and devices, leading to increased traffic with limited resources. Accurate 

traffic analysis and demand forecasting are vital for creating intelligent networks, and Deep Learning (DL) harnesses 

vast network data to improve prediction accuracy and optimize service design and management. This survey explores 

recent breakthroughs in network traffic prediction (NTP), focusing on DL-based models to highlight popular 

techniques and categorize existing research into Recurrent Neural Networks (RNNs), Convolutional Neural 

Networks (CNNs)/ Temporal Convolutional Networks (TCNs), Graph Neural Networks (GNNs), and Large 

Language Models (LLMs). It offers a detailed, tutorial-style overview of these methods, supported by practical data 

analyses and experiments, and addresses their performance in real-world scenarios. The paper concludes with 

insights into current challenges and future opportunities, providing a roadmap for advancing NTP through DL 

innovations in evolving network environments. 

 

1. Introduction 

In recent years, the softwarization of networks has 

transformed how operators manage their infrastructures, 

providing greater flexibility and control to enhance network 

performance. This shift has paved the way for anticipatory 

decision-making, allowing proactive measures like traffic 

engineering, resource allocation, and service orchestration to 

adapt to fluctuating traffic demands. Unlike traditional 

reactive methods that rely on human intervention, this 

anticipatory approach holds significant promise for improving 

resource efficiency and boosting end-user quality of service. 

However, the success of these proactive strategies depends 

heavily on the precision of traffic predictions, highlighting the 

essential role of time-series forecasting in driving innovative 

network management solutions. 

Network traffic prediction (NTP) has been a key area of 

study in networking for decades, with early explorations 

dating back to the 1970s and a recent boom driven by 

advancements in deep learning technologies. Various surveys 

have emerged, organizing the vast body of NTP research into 

different categories, focusing primarily on deep learning 

methods such as Recurrent Neural Networks (RNNs), 

Convolutional Neural Networks (CNNs), Graph Neural 

Networks (GNNs), and emerging Large Language Models 

(LLMs). Recent reviews, such as those by Cao et al. [1] and 

Huang et al. [2] on deep neural networks, and Jiang and Luo 

[3] on GNNs, have concentrated on specific techniques, 

offering limited perspectives. In contrast, broader surveys like 

those by Joshi and Hadi [4] cover a range of methods, 

including preprocessing techniques like discretization and 

feature selection to improve data quality, alongside nonlinear 

prediction approaches. Similarly, Jiang [5] targets cellular 

traffic prediction, categorizing models into machine learning 

and deep learning frameworks, reflecting the diversity of 

current research. 

While existing surveys offer useful classifications and 

insights into specific deep learning techniques, this paper 

takes a more expansive approach by synthesizing a broad 

spectrum of NTP research. It focuses on categorizing and 

evaluating deep learning methods – RNNs, CNNs/TCNs, 

GNNs, and LLMs – and this survey provides a comprehensive 

literature review. Unlike previous reviews, this study not only 

highlights recent advancements but also provides a foundation 
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for understanding their real-world performance, paving the 

way for deeper exploration of challenges and future 

innovations in the field. 

The survey is structured as follows. Section 2 provides a 

literature review, categorizing deep learning methods into four 

types – RNNs, CNNs/TCNs, GNNs, and LLMs – and includes 

an overview of key approaches. Section 3 discusses challenges 

and future directions. Finally, Section 4 offers concluding 

remarks. 

 

2. Literature Review 

2.1 Recurrent neural networks-based approaches 

RNNs and their improved versions are great at spotting 

patterns that change over time in data sequences, making them 

a good fit for NTP tasks where traffic trends follow time-based 

rhythms. Li et al. [6] used a special type of RNN called Long 

Short-Term Memory (LSTM) networks to predict traffic in 

cellular networks and transportation systems, respectively. 

LSTMs, first created by Hochreiter and Schmidhuber [7], are 

designed to handle time series data effectively. They work 

with a unique setup that includes three key steps: (1) A "forget 

gate" decides what old information to let go of by looking at 

the current data and past results, using a simple process to 

filter out unimportant details. (2) An "input gate" figures out 

what new information to keep, combining it with a fresh set of 

data to update the memory. (3) An "output gate" then decides 

what to share next based on the updated memory. This design 

helps LSTMs remember important details over long periods, 

solving issues where regular RNNs forget earlier patterns. 

A simpler version of RNNs is the GRU, introduced by Cho 

et al. [8], which uses just two steps (update and reset) to make 

calculations easier and faster. Patil et al. [9] applied GRUs to 

predict IoT traffic and found they worked better than the older 

ARIMA method. Likewise, Fu et al. [10] tested GRUs and 

LSTMs for traffic flow prediction in California, showing both 

outperformed traditional autoregressive moving average 

models. In GRUs, the update step balances old and new 

information, while the reset step can ignore past data when 

needed, starting fresh with the latest input. 

While RNN-based methods are effective for tracking 

sequential traffic patterns in NTP, they can be heavy on 

computing power and struggle with very long sequences. This 

often makes it necessary to combine them with other models 

to get the best results. 

 

2.2 Image-based approaches 

Image-based approaches transform network traffic data 

into matrix or tensor representations, leveraging CNNs to 

extract spatial patterns. These methods treat traffic matrices as 

images, enabling the detection of local correlations. 

CNNs, as described by LeCun et al. [11], consist of 

convolutional layers where kernels slide over input matrices 

to produce feature maps. Bega et al. [12] constructed a 

distance matrix based on time series similarities among base 

stations and applied CNNs for forecasting, emphasizing local 

patterns. Chen et al. [13] used CNNs for traffic flow prediction, 

capitalizing on their ability to process image-like data. Key 

operations include valid convolution (reducing output 

dimensions by sliding kernels within borders) and padding 

techniques (zero or symmetric) to preserve or expand 

dimensions. CNNs reduce parameters through sparse 

connections and shared weights, making them efficient for 

high-dimensional data. In NTP, tensors are often used, as in 

Ong et al. [14] and Deng et al. [15], where rank-3 tensors store 

spatiotemporal information. 

TCNs, an extension of CNNs for sequential data, utilize 

dilated convolutions to capture long-range dependencies with 

fewer layers. Introduced by Bai et al. [16], TCNs employ 

causal convolutions – ensuring predictions rely solely on past 

data – and residual connections to enhance stability and 

gradient flow. This architecture offers significant advantages 

over RNNs, including parallelizability and computational 

efficiency, making TCNs well-suited for large-scale NTP 

datasets. However, careful tuning of dilation rates is often 

required to balance model complexity and performance. In the 

context of NTP, Wang et al. [17] integrated TCNs with 

Transformers to address limitations in capturing both short- 

and long-term traffic patterns. This hybrid approach leverages 

TCNs’ temporal modeling strengths and Transformers’ ability 

to handle complex dependencies, improving prediction 

accuracy across diverse network scenarios. While TCNs excel 

in handling sequential data efficiently, their effectiveness in 

NTP may depend on dataset characteristics and the specific 

integration with other models. 

Overall, image-based methods enhance spatial feature 

extraction but often need integration with temporal models for 

comprehensive STP. 

 

2.3 Graph Neural Networks-based approaches 

GNNs model networks as graphs, with nodes representing 

devices (e.g., routers, base stations) and edges denoting 

connections, enabling the capture of spatiotemporal 

dependencies. Introduced by Scarselli et al. [18], GNNs learn 

node representations by aggregating neighbor features. Wu et 

al. [19] provided a taxonomy: (1) Recurrent GNNs (RecGNNs) 

use RNNs for iterative neighbor information exchange until 

convergence. (2) Convolutional GNNs (ConvGNNs) 

generalize convolutions to graphs, stacking layers for feature 

learning. (3) Graph Autoencoders encode graphs into latent 

spaces for unsupervised reconstruction. (4) Spatiotemporal 

GNNs combine graph convolutions with CNNs/RNNs for 

dynamic data.  

It is important to emphasize that the GNNs above have 

different mathematical formulations and applications, where 

the details of each case are also discussed above. Wang et al. 

[20] proposed the Time-Series Graph Attention Network 

(TSGAN), using dynamic time warping (DTW) for cellular 

traffic forecasting, outperforming standard GNNs and GRUs 

across short-, mid-, and long-term horizons. Zhou et al. [21] 

introduced a Spatiotemporal Graph Convolutional Network, 

surpassing baselines like LSTM, ConvLSTM, and diffusion 

CNN-RNN in accuracy. 

GNNs excel in topology-aware predictions but face 

challenges in scalability for large graphs and require domain-

specific graph construction. 

 

2.4 Large Language Models-based approaches 

LLMs, pretrained on extensive textual datasets, have 

recently emerged as a novel paradigm for NTP by leveraging 

their proficiency in processing sequential data and generating 

context-aware forecasts. These models reinterpret traffic time 

series as textual sequences, facilitating zero-shot or few-shot 
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predictions through prompting mechanisms. This approach 

capitalizes on LLMs' pre-existing language understanding 

capabilities, adapting them to the spatiotemporal dynamics of 

network traffic. 

Liu et al. [22] developed ST-LLM+, a graph-enhanced 

spatiotemporal LLM that integrates graph structures with 

LLM architectures like GPT to model spatial dependencies, 

achieving superior performance on urban traffic prediction 

tasks. Chen et al. [23] introduced UrbanGPT, a spatiotemporal 

LLM framework which focuses on traffic flow forecasting and 

provides interpretable outputs through natural language 

explanations, enhancing model transparency. For mobile 

network applications, Zhang et al. [24] proposed an LLM-

based framework that employs efficient in-context learning to 

predict mobile traffic, reducing computational demands while 

surpassing traditional deep learning models in energy-efficient 

scenarios. Meanwhile, Ma et al. [25] presented TPLLM, a 

pretrained LLM fine-tuned for traffic prediction, emphasizing 

the role of embedding modules in adapting sequential traffic 

data, thereby improving forecast accuracy. Together, these 

studies underscore the versatility of LLMs in addressing 

diverse NTP challenges. 

LLMs offer significant advantages, including the ability to 

handle multimodal data (e.g., incorporating external factors 

like events) and support transfer learning across domains. 

However, their deployment is constrained by high resource 

requirements and the risk of overfitting without optimized 

prompting strategies. Future research directions may focus on 

developing hybrid LLM-deep learning architectures to enable 

real-time NTP, particularly in the context of emerging 6G 

networks. 

 

3. Challenges and Future Directions 

3.1 Challenges 

Computational Complexity and Performance Trade-

offs: A major challenge in NTP is achieving high accuracy 

while keeping computational demands manageable, as 

complex deep learning models increase training and inference 

times. Many studies neglect to evaluate model complexity or 

runtime, limiting their suitability for resource-constrained 

settings like edge networks. We urge the research community 

to include comparative analyses against benchmarks, 

assessing both accuracy and efficiency metrics (e.g., FLOPs, 

latency), to clarify trade-offs and guide real-world adoption. 

Benchmarking Against Baselines: Advances in time 

series forecasting, including NTP, reveal that sophisticated 

deep learning models often lag behind simple baselines, as 

seen in events like the M4 Forecasting Competition. NTP 

literature frequently skips direct comparisons with baseline 

deep learning models (e.g., vanilla LSTMs) or uses 

inconsistent hyperparameters, skewing evaluations. We 

suggest a shared repository of standardized baselines to ensure 

fair and reproducible assessments, with the experimental code 

in this survey serving as an initial step toward this goal. 

Practical Deployment and Optimization: NTP research 

highlights its importance for resource allocation and 

anticipatory decision-making, yet it falls short in showing how 

models apply to real-world optimization tasks like energy-

efficient scaling or 6G closed-loop control. Current 

evaluations focus on error metrics (MAE, MAPE) but ignore 

live deployment impacts. Future efforts should test models in 

simulated or real settings to measure operational benefits, such 

as lower latency or costs, compared to alternatives. 

Lack of Standardized Datasets: Unlike image processing 

with datasets like ImageNet, NTP lacks a universal benchmark 

due to operators’ reluctance to share sensitive traffic data 

under NDAs, resulting in sparse, outdated public datasets that 

hinder reproducibility. A promising solution is synthetic data 

generation using techniques like STAN’s generative models or 

NetDiffus’ diffusion methods to create realistic spatiotemporal 

traffic traces, potentially forming a shared community dataset 

to overcome privacy issues and improve comparisons. 

 

3.2 Future directions 

Our survey of NTP models highlights the profound 

influence of deep learning across both scientific research and 

practical applications, driven by notable improvements in 

prediction accuracy. This analysis also uncovers several 

promising avenues for refining existing deep learning 

architectures, including RNNs, CNNs/ TCNs, GNNs, and 

LLMs, to further elevate forecasting performance. These 

pathways are designed to meet the dynamic needs of next-

generation networks, capitalizing on the distinct capabilities 

of each method to enhance network management. 

One promising direction is the development of hybrid 

strategies that integrate deep learning, notably LLMs, with 

alternative modeling approaches, optimized through a 

cohesive training framework. These combinations hold the 

potential to outperform standalone models by merging the 

contextual awareness of LLMs with the structured insights of 

other techniques, though current efforts are still in early stages 

and require more extensive research to realize their full 

capabilities. Another critical focus is the reevaluation of loss 

functions used in NTP. Conventional metrics like MAE and 

MSE are effective for predicting traffic trends but may not 

align with the strategic decision-making needs of network 

operations. Ongoing innovations are exploring custom loss 

functions, shaped by expert input, to better match model 

outputs to user needs, while emerging meta-learning 

techniques aim to automate the design of loss functions 

tailored to specific goals, boosting model flexibility. 

A major area of future development is the transition to 

online forecasting frameworks, moving away from current 

practices that rely on offline training with historical data, 

testing with replayed datasets, and minimal consideration of 

inference latency. Future systems should support real-time 

operation to meet stringent latency requirements, such as 

millisecond-level needs in radio access networks, 

necessitating research into accuracy degradation over time, the 

necessity for retraining or continual learning, and the 

adaptation of evaluation methods to handle live streaming data 

effectively. For LLMs, this could mean dynamically adjusting 

prompts to keep predictions relevant amid shifting traffic 

patterns. Lastly, enhancing the generalization of NTP models 

remains a pressing issue, as most are validated in specific 

contexts like urban regions, limiting their broader applicability. 

The transferability of models across different regions remains 

uncertain, underscoring the need for wider testing. Progress in 

transfer learning, potentially extended to LLMs’ pretraining 

advantages, offers a pathway to develop more versatile and 

widely applicable forecasting tools. 
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4. Conclusion 

This survey provides a comprehensive examination of NTP, 

showcasing the evolution from RNNs to advanced deep 

learning techniques, including CNNs/TCNs, GNNs, and the 

emerging role of LLMs. By categorizing diverse approaches 

and offering a tutorial-style explanation of their mechanics, 

the study equips researchers and practitioners with the 

knowledge to apply these models effectively. The practical 

experiments and data analyses underscore the potential of DL 

to enhance prediction accuracy, while the identified challenges 

– such as computational complexity, benchmarking gaps, and 

the need for standardized datasets – highlight areas for future 

focus. Looking ahead, the integration of hybrid models, online 

forecasting frameworks, and improved generalization through 

transfer learning, including LLM adaptations, promises to 

shape the future of NTP, particularly as networks transition to 

6G technologies. 
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