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As telecommunications advance toward next-generation networks beyond 5G, they encounter the growing
challenge of accommodating more users and devices, leading to increased traffic with limited resources. Accurate
traffic analysis and demand forecasting are vital for creating intelligent networks, and Deep Learning (DL) harnesses
vast network data to improve prediction accuracy and optimize service design and management. This survey explores
recent breakthroughs in network traffic prediction (NTP), focusing on DL-based models to highlight popular
techniques and categorize existing research into Recurrent Neural Networks (RNNs), Convolutional Neural
Networks (CNNs)/ Temporal Convolutional Networks (TCNs), Graph Neural Networks (GNNs), and Large
Language Models (LLMs). It offers a detailed, tutorial-style overview of these methods, supported by practical data
analyses and experiments, and addresses their performance in real-world scenarios. The paper concludes with
insights into current challenges and future opportunities, providing a roadmap for advancing NTP through DL

innovations in evolving network environments.

1. Introduction

In recent years, the softwarization of networks has
transformed how operators manage their infrastructures,
providing greater flexibility and control to enhance network
performance. This shift has paved the way for anticipatory
decision-making, allowing proactive measures like traffic
engineering, resource allocation, and service orchestration to
adapt to fluctuating traffic demands. Unlike traditional
reactive methods that rely on human intervention, this
anticipatory approach holds significant promise for improving
resource efficiency and boosting end-user quality of service.
However, the success of these proactive strategies depends
heavily on the precision of traffic predictions, highlighting the
essential role of time-series forecasting in driving innovative
network management solutions.

Network traffic prediction (NTP) has been a key area of
study in networking for decades, with early explorations
dating back to the 1970s and a recent boom driven by
advancements in deep learning technologies. Various surveys
have emerged, organizing the vast body of NTP research into
different categories, focusing primarily on deep learning

methods such as Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), Graph Neural
Networks (GNNs), and emerging Large Language Models
(LLMs). Recent reviews, such as those by Cao et al. [1] and
Huang et al. [2] on deep neural networks, and Jiang and Luo
[3] on GNNs, have concentrated on specific techniques,
offering limited perspectives. In contrast, broader surveys like
those by Joshi and Hadi [4] cover a range of methods,
including preprocessing techniques like discretization and
feature selection to improve data quality, alongside nonlinear
prediction approaches. Similarly, Jiang [5] targets cellular
traffic prediction, categorizing models into machine learning
and deep learning frameworks, reflecting the diversity of
current research.

While existing surveys offer useful classifications and
insights into specific deep learning techniques, this paper
takes a more expansive approach by synthesizing a broad
spectrum of NTP research. It focuses on categorizing and
evaluating deep learning methods — RNNs, CNNs/TCNs,
GNNs, and LLMs — and this survey provides a comprehensive
literature review. Unlike previous reviews, this study not only
highlights recent advancements but also provides a foundation
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for understanding their real-world performance, paving the
way for deeper exploration of challenges and future
innovations in the field.

The survey is structured as follows. Section 2 provides a
literature review, categorizing deep learning methods into four
types — RNNs, CNNs/TCNs, GNNs, and LLMs — and includes
an overview of key approaches. Section 3 discusses challenges
and future directions. Finally, Section 4 offers concluding
remarks.

2. Literature Review

2.1 Recurrent neural networks-based approaches

RNNs and their improved versions are great at spotting
patterns that change over time in data sequences, making them
a good fit for NTP tasks where traffic trends follow time-based
rhythms. Li et al. [6] used a special type of RNN called Long
Short-Term Memory (LSTM) networks to predict traffic in
cellular networks and transportation systems, respectively.
LSTMs, first created by Hochreiter and Schmidhuber [7], are
designed to handle time series data effectively. They work
with a unique setup that includes three key steps: (1) A "forget
gate" decides what old information to let go of by looking at
the current data and past results, using a simple process to
filter out unimportant details. (2) An "input gate" figures out
what new information to keep, combining it with a fresh set of
data to update the memory. (3) An "output gate" then decides
what to share next based on the updated memory. This design
helps LSTMs remember important details over long periods,
solving issues where regular RNNs forget earlier patterns.

A simpler version of RNNs is the GRU, introduced by Cho
et al. [8], which uses just two steps (update and reset) to make
calculations easier and faster. Patil et al. [9] applied GRUs to
predict IoT traffic and found they worked better than the older
ARIMA method. Likewise, Fu et al. [10] tested GRUs and
LSTMs for traffic flow prediction in California, showing both
outperformed traditional autoregressive moving average
models. In GRUs, the update step balances old and new
information, while the reset step can ignore past data when
needed, starting fresh with the latest input.

While RNN-based methods are effective for tracking
sequential traffic patterns in NTP, they can be heavy on
computing power and struggle with very long sequences. This
often makes it necessary to combine them with other models
to get the best results.

2.2 Image-based approaches

Image-based approaches transform network traffic data
into matrix or tensor representations, leveraging CNNs to
extract spatial patterns. These methods treat traffic matrices as
images, enabling the detection of local correlations.

CNNs, as described by LeCun et al. [11], consist of
convolutional layers where kernels slide over input matrices
to produce feature maps. Bega et al. [12] constructed a
distance matrix based on time series similarities among base
stations and applied CNNs for forecasting, emphasizing local
patterns. Chen et al. [13] used CNNs for traffic flow prediction,
capitalizing on their ability to process image-like data. Key
operations include wvalid convolution (reducing output
dimensions by sliding kernels within borders) and padding
techniques (zero or symmetric) to preserve or expand
dimensions. CNNs reduce parameters through sparse

connections and shared weights, making them efficient for
high-dimensional data. In NTP, tensors are often used, as in
Ong et al. [14] and Deng et al. [15], where rank-3 tensors store
spatiotemporal information.

TCNs, an extension of CNNs for sequential data, utilize
dilated convolutions to capture long-range dependencies with
fewer layers. Introduced by Bai et al. [16], TCNs employ
causal convolutions — ensuring predictions rely solely on past
data — and residual connections to enhance stability and
gradient flow. This architecture offers significant advantages
over RNNs, including parallelizability and computational
efficiency, making TCNs well-suited for large-scale NTP
datasets. However, careful tuning of dilation rates is often
required to balance model complexity and performance. In the
context of NTP, Wang et al. [17] integrated TCNs with
Transformers to address limitations in capturing both short-
and long-term traffic patterns. This hybrid approach leverages
TCNs’ temporal modeling strengths and Transformers’ ability
to handle complex dependencies, improving prediction
accuracy across diverse network scenarios. While TCNs excel
in handling sequential data efficiently, their effectiveness in
NTP may depend on dataset characteristics and the specific
integration with other models.

Overall, image-based methods enhance spatial feature
extraction but often need integration with temporal models for
comprehensive STP.

2.3 Graph Neural Networks-based approaches

GNNs model networks as graphs, with nodes representing
devices (e.g., routers, base stations) and edges denoting
connections, enabling the capture of spatiotemporal
dependencies. Introduced by Scarselli et al. [18], GNNs learn
node representations by aggregating neighbor features. Wu et
al. [19] provided a taxonomy: (1) Recurrent GNNs (RecGNNs)
use RNNs for iterative neighbor information exchange until
convergence. (2) Convolutional GNNs (ConvGNNs)
generalize convolutions to graphs, stacking layers for feature
learning. (3) Graph Autoencoders encode graphs into latent
spaces for unsupervised reconstruction. (4) Spatiotemporal
GNNs combine graph convolutions with CNNs/RNNs for
dynamic data.

It is important to emphasize that the GNNs above have
different mathematical formulations and applications, where
the details of each case are also discussed above. Wang et al.
[20] proposed the Time-Series Graph Attention Network
(TSGAN), using dynamic time warping (DTW) for cellular
traffic forecasting, outperforming standard GNNs and GRUs
across short-, mid-, and long-term horizons. Zhou et al. [21]
introduced a Spatiotemporal Graph Convolutional Network,
surpassing baselines like LSTM, ConvLSTM, and diffusion
CNN-RNN in accuracy.

GNNs excel in topology-aware predictions but face
challenges in scalability for large graphs and require domain-
specific graph construction.

2.4 Large Language Models-based approaches

LLMs, pretrained on extensive textual datasets, have
recently emerged as a novel paradigm for NTP by leveraging
their proficiency in processing sequential data and generating
context-aware forecasts. These models reinterpret traffic time
series as textual sequences, facilitating zero-shot or few-shot
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predictions through prompting mechanisms. This approach
capitalizes on LLMs' pre-existing language understanding
capabilities, adapting them to the spatiotemporal dynamics of
network traffic.

Liu et al. [22] developed ST-LLM+, a graph-enhanced
spatiotemporal LLM that integrates graph structures with
LLM architectures like GPT to model spatial dependencies,
achieving superior performance on urban traffic prediction
tasks. Chen et al. [23] introduced UrbanGPT, a spatiotemporal
LLM framework which focuses on traffic flow forecasting and
provides interpretable outputs through natural language
explanations, enhancing model transparency. For mobile
network applications, Zhang et al. [24] proposed an LLM-
based framework that employs efficient in-context learning to
predict mobile traffic, reducing computational demands while
surpassing traditional deep learning models in energy-efficient
scenarios. Meanwhile, Ma et al. [25] presented TPLLM, a
pretrained LLM fine-tuned for traffic prediction, emphasizing
the role of embedding modules in adapting sequential traffic
data, thereby improving forecast accuracy. Together, these
studies underscore the versatility of LLMs in addressing
diverse NTP challenges.

LLMs offer significant advantages, including the ability to
handle multimodal data (e.g., incorporating external factors
like events) and support transfer learning across domains.
However, their deployment is constrained by high resource
requirements and the risk of overfitting without optimized
prompting strategies. Future research directions may focus on
developing hybrid LLM-deep learning architectures to enable
real-time NTP, particularly in the context of emerging 6G
networks.

3. Challenges and Future Directions

3.1 Challenges

Computational Complexity and Performance Trade-
offs: A major challenge in NTP is achieving high accuracy
while keeping computational demands manageable, as
complex deep learning models increase training and inference
times. Many studies neglect to evaluate model complexity or
runtime, limiting their suitability for resource-constrained
settings like edge networks. We urge the research community
to include comparative analyses against benchmarks,
assessing both accuracy and efficiency metrics (e.g., FLOPs,
latency), to clarify trade-offs and guide real-world adoption.

Benchmarking Against Baselines: Advances in time
series forecasting, including NTP, reveal that sophisticated
deep learning models often lag behind simple baselines, as
seen in events like the M4 Forecasting Competition. NTP
literature frequently skips direct comparisons with baseline
deep learning models (e.g., vanilla LSTMs) or uses
inconsistent hyperparameters, skewing evaluations. We
suggest a shared repository of standardized baselines to ensure
fair and reproducible assessments, with the experimental code
in this survey serving as an initial step toward this goal.

Practical Deployment and Optimization: NTP research
highlights its importance for resource allocation and
anticipatory decision-making, yet it falls short in showing how
models apply to real-world optimization tasks like energy-
efficient scaling or 6G closed-loop control. Current
evaluations focus on error metrics (MAE, MAPE) but ignore
live deployment impacts. Future efforts should test models in

simulated or real settings to measure operational benefits, such
as lower latency or costs, compared to alternatives.

Lack of Standardized Datasets: Unlike image processing
with datasets like ImageNet, NTP lacks a universal benchmark
due to operators’ reluctance to share sensitive traffic data
under NDAs, resulting in sparse, outdated public datasets that
hinder reproducibility. A promising solution is synthetic data
generation using techniques like STAN’s generative models or
NetDiffus’ diffusion methods to create realistic spatiotemporal
traffic traces, potentially forming a shared community dataset
to overcome privacy issues and improve comparisons.

3.2 Future directions

Our survey of NTP models highlights the profound
influence of deep learning across both scientific research and
practical applications, driven by notable improvements in
prediction accuracy. This analysis also uncovers several
promising avenues for refining existing deep learning
architectures, including RNNs, CNNs/ TCNs, GNNs, and
LLMs, to further elevate forecasting performance. These
pathways are designed to meet the dynamic needs of next-
generation networks, capitalizing on the distinct capabilities
of each method to enhance network management.

One promising direction is the development of hybrid
strategies that integrate deep learning, notably LLMs, with
alternative modeling approaches, optimized through a
cohesive training framework. These combinations hold the
potential to outperform standalone models by merging the
contextual awareness of LLMs with the structured insights of
other techniques, though current efforts are still in early stages
and require more extensive research to realize their full
capabilities. Another critical focus is the reevaluation of loss
functions used in NTP. Conventional metrics like MAE and
MSE are effective for predicting traffic trends but may not
align with the strategic decision-making needs of network
operations. Ongoing innovations are exploring custom loss
functions, shaped by expert input, to better match model
outputs to user needs, while emerging meta-learning
techniques aim to automate the design of loss functions
tailored to specific goals, boosting model flexibility.

A major area of future development is the transition to
online forecasting frameworks, moving away from current
practices that rely on offline training with historical data,
testing with replayed datasets, and minimal consideration of
inference latency. Future systems should support real-time
operation to meet stringent latency requirements, such as
millisecond-level needs in radio access networks,
necessitating research into accuracy degradation over time, the
necessity for retraining or continual learning, and the
adaptation of evaluation methods to handle live streaming data
effectively. For LLMs, this could mean dynamically adjusting
prompts to keep predictions relevant amid shifting traffic
patterns. Lastly, enhancing the generalization of NTP models
remains a pressing issue, as most are validated in specific
contexts like urban regions, limiting their broader applicability.
The transferability of models across different regions remains
uncertain, underscoring the need for wider testing. Progress in
transfer learning, potentially extended to LLMs’ pretraining
advantages, offers a pathway to develop more versatile and
widely applicable forecasting tools.
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4. Conclusion

This survey provides a comprehensive examination of NTP,
showcasing the evolution from RNNs to advanced deep
learning techniques, including CNNs/TCNs, GNNs, and the
emerging role of LLMs. By categorizing diverse approaches
and offering a tutorial-style explanation of their mechanics,
the study equips researchers and practitioners with the
knowledge to apply these models effectively. The practical
experiments and data analyses underscore the potential of DL
to enhance prediction accuracy, while the identified challenges
— such as computational complexity, benchmarking gaps, and
the need for standardized datasets — highlight areas for future
focus. Looking ahead, the integration of hybrid models, online
forecasting frameworks, and improved generalization through
transfer learning, including LLM adaptations, promises to
shape the future of NTP, particularly as networks transition to
6G technologies.
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