CBDC 시스템 R-ABAC 접근통제 모델 설계 및 검증

김지민¹, 박건우², 김솔리¹

¹서울여자대학교 정보보호학과 학부생

²중앙대학교 산업보안학과 학부생

carrp@swu.ac.kr, pomol4@cau.ac.kr, solio@swu.ac.kr,

Design and Verification of an R-ABAC Access Control Model for CBDC Systems

Ji-Min Kim¹, Gun-Woo Park², Soli Kim¹
¹Dept. of Information Security, Seoul Women's University
²Dept. of Industrial Security, Chung-Ang University

요 약

본 연구는 중앙은행 디지털화폐(CBDC) 시스템에서 발생할 수 있는 권한 상승 위협에 대응하기 위해 R-ABAC(Role-Attribute Based Access Control) 모델 기반 접근 제어 정책을 설계하고 검증하였다. Alloy Analyzer 와 OPA(Open Policy Agent)를 활용한 정적·동적 검증을 통해 정책의 논리적 일관성과 운영 환경 적용 가능성을 확인하였다.

1. 서론

중앙은행 디지털화폐(CBDC)는 민간 스테이블코인의 등장과 코로나 19 이후 확산된 비대면 결제를 계기로 글로벌 금융시장에서 연구와 시범 도입이 점차확대되고 있다. 한국은행 역시 CBDC 시험 프로젝트'한강'을 추진하였으며, 이 과정에서 발생할 수 있는보안 위협은 여전히 주요한 연구 대상이다.

DFD 를 기반으로 CBDC 시스템의 STRIDE 위협 모델링을 수행한 결과, 120 개 위협 중 약 27.5%가 권한 상승(Elevation of Privilege) 범주에 속하여 6 개 위협 중 가장 높은 비중을 차지하였다.

이에 대응하기 위해 본 연구에서는 R-ABAC(Role-Attribute Based Access Control) 모델을 설계하고, 정적·동적 검증을 통해 설계 단계의 논리 일관성과 운영단계의 정책 집행력을 동시에 확보하는 것을 목표로한다.

2. R-ABAC 모델 설계 및 접근 제어 정책 설계

국제결제은행(BIS)은 CBDC 보안 설계의 핵심 원칙으로 ZTA(Zero Trust Architecture)를 명시하였으며[1], ZTA 는 최소 권한 원칙, 지속적 모니터링, 세분화된접근제어를 요구한다.

이에 따라 미국 사이버 보안 및 인프라보안국 (CISA)은 ZTA 모델 구현을 위한 접근 제어 방식으로

RBAC 또는 ABAC 중 하나를 활용할 것을 권고하고 있으며[2], NIST SP 800-162, 개인정보보호법, 금융보안 원 가이드 등에서도 접근제어 정책 설계와 도입에 대한 권고사항을 제시하고 있다.

RBAC 은 단순하고 관리 효율성이 높지만 역할 수가 많아질수록 표현에 제약이 있고, ABAC 은 세밀한 정책 설정이 가능하지만 설계와 운영 측면에서 부담이 크다.

이를 CBDC 권한 관리 체계에 적용하여 두 모델의 한계를 상호 보완한 보안 정책을 제시하였다.

	구성요소	정의	특징	정책 표현 예시
1	사용자 속성 (UATT)	사용자에 대한 속성 정보	- MFA 여부, 소속(은행 직원, 일반 사용자, 규제기관 등) 등을 포함	MFA(s) = True,
2	객체 속성 (OATT)	접근 대상 격체에 대한 속성 정보	- owner_id, object_type 등을 포함	object.type = Account
3	속성 타입 (attType)	속성 값의 데이터 유형	- {atomic, set} 중 하나로 명시 - 검증 방식이 달라짐	owner_id = 123 verificationDevice ∋ session.device
4	권한 필터링 정책 (PFP)	UATT와 OATT를 조합한 필터링 규칙	- 단순한 역할 혈당을 넘어 조건부 접근 제어 가능 - 필터링 언어로 작성	- 결제 금역(amount)이 1천만 이상일 시, MFA 검증 필수 - Account 객체 접근은 owner와 사용자 동일 시 허용 - Issue 연산은 CB_Admin만 Currency에 가능
5	필터 함수 (FILTER)	주어진 세션, 작업, 객체에 대해 권한 허용 여부를 반환하는 함수	- Boolean 함수로 T, F를 빈환	$F_i(session,operation,object) \to \{T,F\}$
6	대상 필터 (TargetFilter)	객체의 속성에 따라 어떤 필터 함수들을 적용할지 매핑	- 객체 종류마다 다른 규칙을 적용	(op = View ⇒ P1[s,o] or P7[s,o])
7	필터링 언어 (LFilter, LCondition)	정책 표현에 사용되는 CPL 기반 논리 언어	- 집합 포함(드, ∈), 원자 비교(=, < , >), 논리 연산(^, ∨, ^) 지원	balance(s) ≥ transactionAmount ∧ MFA(s) = True

<표 1> R-ABAC 모델 구성요소와 정책 표현 예시

R-ABAC 구성요소를 기반으로, 정책 설계는 다음과 같이 이루어졌다.

첫째, 사용자 속성(UATT)과 객체 속성(OATT)을 중심으로 기본 속성을 구성하였다. 예를 들어, 사용자의 MFA 인증 여부, 소속, 객체의 소유자 정보(owner_id),

객체 유형(Account 등)에 따라 시스템 접근 권한이 세 분화된다.

둘째, 속성 타입(attType) 및 필터 함수(FILTER)를 통해 속성의 데이터 타입과 조건 검사를 체계화하였 으며, 필터 정책(PFP)과 대상 필터(TargetFilter)를 조합 하여 상황별 정책 적용을 설계하였다.

셋째, 정책 논리(Filter, LCondition)를 고려하여 정책 조건을 논리식으로 결합하고, 우선순위를 제어할 수 있도록 하였다.

변호	정책 설명	역함	허용 행위	격체/속성	변호	정책 설명	역함	허용 행위	객체/속성
1	사용자는 자신의 계좌만 조회 가능	User	view	본인 계좌	1	사용자는 타인의 계좌 조회 불가	User	view	타인 계좌
2	사용자는 자신의 계좌에만 결제 요청 가능	User	pay	본인 계좌	2	사용자는 타인의 제하 경제 요청 불가	User	pay	타인 계화
3	사용자는 고역 결제 시 MFA 필수	User	pay	본인 계좌	3	루팅된 기기에서 경제/전환 요청 불가	User	pay, convert	본인 계좌
4	사용자는 고액 경제 전한 요청은 등록 기기만 가능	User	update, patch	한국은행 시스템 서버	4	사용자는 정책 세비 접근 불가	User	view, update	정책 서버
5	시스템 관리자는 시스템 유지보수만 가능	Sys_Operator	update, patch	한국은행 시스템 서버	5	사용자는 로그 접근 불가	User	view	⊋⊒DB
6	Regulator(*) 星口 五刻 万次	Regulator	view	로그 08	6	19세 미만 사용자는 고액 송급 불가	User	pay	본인 계화
7	시중은행 직원은 소속 은행 고객의 정보안 조회 가능	Bank_User	view	고객 정보 서비	7	시중은행 직원은 정책 설정/화례 발행 불가	Bank_User	issue, set_policy	정책 서버, 시스템 서버
8	시중은행 직원은 평일에만 고객 등록 가능	Bank_User	register	고객 정보 서버	8	시중은행 직원은 타 은행 고객 정보 조회 불가	Bank_User	view	고객 정보 서
9	한국은행 관리자만 화폐 발행 및 정책 설정 가능	CB_Admin	issue, set_policy	정책 서버	9	한국은행 관리자는 코그 접근 불가	CB_Admin	view	⊋⊒DB
10	한국은행 관리자는 소속 은행 시스템만 제어 가능	CB_Admin	set	한국은행 시스템 서버	10	한국은행 관리자는 타 은행 시스템 설정 불가	CB_Admin	update	시중은행 시스템 서비
11	근무 시간만 업무 처리 가능	User 제외 ALL	ALL	시중/한국은행 시스템 서버	11	시스템 관리자는 고격 정보 서버 접근 공지	Sys_Operator	view	고객 정보 셔

<표 2> 접근 제어 정책 목록

접근 제어 정책은 명시적 허용 정책과 명시적 거부 정책을 병행 사용하여, 허용 정책 만으로는 통제하기 어려운 세밀한 제어가 가능하도록 하였다.

3. 정책 검증 설계

정책 검증은 Alloy Analyzer 와 OPA 를 병행 활용하여 설계 단계에서는 정책 논리의 타당성을, 운영 환경에서는 정책 실행 제어를 효과적으로 보장하는지 검증하고자 했다.

R-ABAC 모델 구조를 기준으로, Alloy Analyzer 를 활용한 정적 검증은 사용자·역할·권한 간의 정적인 관계를 모델링하여 정책의 논리적 일관성을 확인하고, OPA 를 활용한 동적 검증은 일부 역할만 실제 세션에서 활성화되는 상황을 가정하여 정책이 운영 환경에서도 의도대로 작동하는지 입증하였다.

(그림 1) Alloy Ananlyzer 와 OPA 의 검증 영역

따라서 두 검증에서 논리적 결함이 발견되지 않는 경우, 정책 모델은 구조적으로 안정적이며 실행 환경 에서도 충분한 실현 가능한 것으로 판단할 수 있다.

그림 1 에서는 NIST 의 R-ABAC 모델 구조[3]에서 일부 단순화한 구조를 차용하였다.

4. 정책 검증 결과

Alloy Ananlyzer 실행 결과, 모든 assert 문이 위배되

지 않아 정책에 논리적 모순이 없음을 확인하였다. 서로 다른 접근 정책들은 PFP 을 통해 효과적으로 통합되어 충돌이 발생하지 않음을 검증하였다. 또한, 관계 집합의 인스턴스를 실제로 생성함으로써 정책이실제 시스템에도 적용 가능함을 확인하였다.

(그림 2) Alloy Analyzer 실행 결과 시각화 자료

그림 1은 주체(S), 객체(O), 환경(E)의 세 가지 요소가 명확히 구분되어 시스템에 반영되었으며, Auth_rule[S, O, E] 형태로 통합되어 다양한 접근 정책이 동시에 적용될 수 있음을 보여준다.

번호	테스트 시나리오	예상 결과	권한상승 종류	번호	호 테스트 시나리오		권한상승 종류
1	Bank_User가 근무시간에 소속 은행 거래 정보 조회	허용	수평적	9	Bank_Admin이 CB_Admin 발행 시스템 접근	거부	수직적
2	MFA 없는 User가 고역 송금	거부	수평적	10	시스템 관리자가 로그 삭제 시도	거부	수직적
3	Bank_User가 근무시간에 외부에서 타 기관 계좌 조회	거부	수평적	11	MFA 있는 User가 월요일 오전 10시에 고액 결제	허용	
4	시스템 관리자가 정책 서버 수정	거부	수직적	12	Bank_User가 소속 은행 고객 정보 조회	허용	
5	19세 이상의 MFA 있는 User가 고액 송금	허용	-	13	User가 정책 서버 접근	거부	수평적
6	User가 다른 User 계좌 조회	거부	수평적	10 03671 5 4 707 8 2			104
7	User가 본인 계좌 조회	허용		14	Regulator가 업무 시간 내 로그 접근	허용	-
8	User가 Bank_User 권한 송금 승인	거부	수직적	15	CB_Admin이 밤 10시에 정책 서버 수정	허용	수직적

<표 3> OPA 테스트 시나리오 15 가지

OPA 실행 결과, 수평적·수직적 두 가지 관점에서 총 15 개의 임의 권한 상승 시나리오에 대한 정책의 유효성과 정확성을 확인하였다.

5. 결론 및 향후 연구 방향

본 연구는 CBDC 환경에서 발생할 수 있는 권한 상승 위협에 대응하기 위해 R-ABAC 정책 기반 보호 체계를 설계·구현하였다. 이 모델은 실제 CBDC 시 스템의 보안 아키텍처와 정책 수립에 활용 가능하며, 향후 모의 환경에서 조직 규모와 보안 요구 수준에 따라 유연하게 적용 가능하도록 추가 검증할 계획이다.

참고문헌

- [1] BIS, Project Polaris: A security and resilience framework for CBDC systems, p. 23, 2023.
- [2] CISA, Compendium of Cybersecurity and Infrastructure Security Agency (CISA) Technology Evaluations, p. 46, 2023.
- [3] X. Jin, R. Sandhu, R. Krishnan, RABAC: Role-Centric Attribute-Based Access Control, Proceedings of the 6th International Conference on Mathematical Methods, Models and Architectures for Computer Network Security (MMM-ACNS 2012), 2012, pp. 84-96.