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Abstract

Rapid advances in Al have enabled realistic virtual characters with applications in gaming, education, and
entertainment. Audio-driven talking face generation remains challenging due to issues in image fidelity and natural
blinking. We propose HifiDiff, a conditional diffusion framework that takes reference frames, masked faces, audio,
and blinking cues to produce high-quality avatars. Our method achieves enhanced visual realism, accurate lip-
sync, and natural eye blinking, outperforming prior approaches. Extensive experiments on CREMA-D demonstrate
its effectiveness, highlighting its potential to advance expressive and controllable talking face generation.

1. Introduction

Talking face generation seeks to synthesize
realistic facial movements from speech, with
emphasis on lip synchronization, facial
coherence, and visual quality. Despite recent
progress, producing natural and expressive

results remains challenging due to the complexity
of human expressions and speech dynamics.

Farly works [1, 2] mainly employed GANs, but
adversarial training often causes mode collapse,
temporal artifacts, and unstable performance,

especially at higher resolutions. Recent
diffusion-based methods [3, 4, 5] improve
fidelity but rely on motion frames, leading to

quality degradation in long sequences. In
contrast, 3D-based approaches [6] better preserve
geometry and coherence, yet typically require
identity-specific training, limiting scalability.

We propose a pixel-space conditional diffusion
model for generalized talking face synthesis.
Unlike landmark-based diffusion methods that
often yield misaligned expressions, our framework
employs a lip-sync discriminator to learn
implicit audio- lip correspondence, while
explicitly controlling pose and eye blinking
through structured signals. A landmark-based
masking strategy further improves fidelity by
focusing generation on the facial region, and
frame interpolation enhances temporal coherence
for smoother videos.

Our main contributions are as follows: (1) A
novel pixel-space diffusion framework for high-
quality talking face generation. (2) A landmark-
constrained masking mechanism enabling accurate

lip sync and natural blinking with identity
preservation. (3) Long-duration synthesis with
consistent control over lip, eye, pose, and

facial dynamics.

2. Related Work

Talking head generation seeks not only accurate
lip- speech alignment but also natural eye
blinking and head motion. 3D-based methods [7, 8]
using 3D Morphable Models or Neural Radiance
Fields [9, 10] improve realism but often require
identity-specific training, limiting
generalization.

2D GAN-based approaches [11] have advanced visual
quality, vyet suffer from instability and mode
collapse [9]. Landmark-driven methods [14] add
structure but still fail in achieving precise lip
synchronization.

Recently, diffusion models have emerged as more
stable and expressive. DiffTalk [12] enhances
fidelity but struggles with cross—identity lip-
sync; Diff2Lip [13] achieves accurate lips but
neglects blinking and pose; Diffused Heads [30,
5] mitigate motion degradation but remain limited
in long sequences.

Our framework addresses these issues by unifying
lip-sync, head pose, and blinking within a
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diffusion-based model for high-fidelity,
temporally coherent talking head generation.

3. Method

In this section, we provide a detailed
description of the proposed method and its
components.

A framework for inference in Fig 1., diffusion
model conditioned on masked frames, source

identity, audio features, and blinking signals.
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Figure 1: Overview of the proposed talking head
synthesis framework wusing a Diffusion Model for
inference.
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Figure 2: Facial landmark detection and masking. DLib
detects 68 landmarks to create a facial region mask,

producing a masked image for further processing.

Masked Face. Fig. 2 1illustrates masked face
generation. We employ DLib [15] for robust real-

time landmark detection, which handles facial
rotation effectively and enables reliable
preprocessing.

Eye Blinking. Blink signals are detected using
the Eye Aspect Ratio (EAR) for both eyes,
following Zhang et al. [16], to quantify eye
openness.

Objective Function. For training, our model uses
the loss framework to ensure realism and lip-
sync, with each loss term optimizing a specific
aspect of talking face generation. In the
denoising function € o(x¢,t) [17] estimates the
noise component present in the corrupted sample
X¢. The model 1is optimized using a simple mean
squared error (MSE) loss, defined as:

Lsimple = By xg.e~nr(01) [||5 —&g(x,1) ||§] (@)

compute xg(x¢,t) as an
clean frame xo. An Lo
loss ensures matches x0 at each

Following [15], we
estimate of the
reconstruction

timestep, improving denoising accuracy:

2
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The model aligns lip movements with audio by
minimizing the cosine similarity between video
embeddings x and audio embeddings a using a pre-
trained SyncNet [18]:

Esync = ]Exn,s.:,s [SYHCNet (—’fg.\‘:.\' +51 5.5 5)} (3)

To preserve visual details, a perceptual loss

minimizes differences between generated and
reference frame features using VGG-19 [19]:
2

o = Bngars i |08~ 0[] (0

The total loss is a weighted sum:
‘Clulal - )'l Esimple + )'2 L"LZ + )'3 f'sync + ’LPCLpips (5)

with A1=1, A2=1, A3=0.15, A4=0.25.

4. Experiment

4.1 Setup

We evaluate our method on the CREMA-D
[26], containing 7,442 clips from 91
speakers, each 1-5 seconds long, capturing
diverse emotions. Following Stypulkowski et al.
[4], we split the dataset into 90% for training
and 10% for testing. Videos are resized to
128 X128 pixels at 25fps, and audio is resampled
to 16kHz and converted into spectrograms
(16<80) using STFT (window=800, hop=200).

Dataset.
dataset

Implementation. Our model wuses a UNet-based
architecture [4] with an initial channel size of
128 and channel multipliers (1, 2, 2, 4). An
audio encoder extracts high-level features, and
the diffusion process employs T=1000 timesteps
for training, reduced to T=50 at inference. Frame
interpolation [17] mitigates temporal jitter.

Evaluation. We assess visual quality using FID
[20] and FVD [21], lip-sync accuracy via LSEC
[22], and eye-blinking realism through blink
frequency and duration [4].

4.2 Comparision with SOTA methods

We compare our method with several state—of-the-
art approaches: SDA [25], MakeltTalk [14],
Wav2Lip [24], PC-AVS [23], EAMM [9], and Diffused
Heads [4]. Fig. 3 shows visual comparisons on
CREMA-D. Our model consistently produces high-
fidelity results with natural pose, accurate lip—
sync, and realistic eye blinking (Table 1).
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GAN-based methods like SDA often generate
artifacts and reduce realism. MakeltTalk, relying
on facial landmarks, shows poor audio- face
synchronization, while Wav2Lip achieves good lip-—
sync but unnatural pose and blinking. PC-AVS,
using modulated convolutions, introduces image
artifacts, and EAMM, despite modeling audio-to-
facial dynamics, produces blur and imperfect lip
alignment. Diffused Heads improves blinking, head

motion, and image quality but struggles with
long-sequence generation, where outputs can
collapse over time.
Method FVD| FID| Blinks/s Blink Duration LSE¢ 1
GT - B 0.24 0.4 5.88
SDA 37648 79.82 025 0.26 5.10
MakeltTalk 256.88 1726 0.02 0.80 371
Wav2Lip 193.32 1257 - - 6.08
PC-AVS 333.94 2253 0.02 0.20 5.67
EAMM 196.82  19.40 - - 422
Diffused Heads 88.614 1245  0.28 0.36 456
Our 7468 1151 030 0.27 573
Table 1: Results evaluating the impact of different
methods. | : lower is better, T : higher is better.

4.3 Ablation Studies

MakeltTalk

Wav2Lip

PC-AVS

EAMM

Diffused Head

comparison between

Figure 3: Qualitative existing

methods and our proposed approach. Each row

corresponds to a different method.

We conduct ablation experiments to assess the

contribution of four 1input components: masked

face, eye-blinking signal, audio condition, and
Three settings are compared:
(2) full

inputs except masked face.

reference frames.
(1) all
model ,

inputs except eye-blinking,
and (3) all
Each variant is evaluated on visual quality, lip-
accuracy, blink rate, and median blink
Results (Table 5) show that the full
model achieves the best balance, closely matching

sync
duration.

ground truth and demonstrating the importance of
each input modality.

Method FVD| FID| Blinks/s Blink Duration LSE¢ 1
GT - 024 0.40 5.88
Set 1 (w/o blinking) 7229 1139 - - 5.82
Set 2 (full input) 7468 1151 030 0.27 5.73
Set 3 (w/o masked face) 487.93 18.06  1.00 0.12 458
Table 2: Ablation study of different input

configurations.

5. Conclusion

We present a diffusion-based framework for

talking face generation that integrates masked

face guidance, audio conditions, eye-blinking

signals, and reference frames. Our approach

achieves accurate lip synchronization, natural

pose and blinking, and high visual fidelity while

preserving speaker identity. Quantitative and
qualitative results on CREMA-D show that our
method outperforms prior state—of-the-art
approaches, enabling  more expressive and
controllable talking face generation.
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