언어 기반 가이드를 통한 제한된 시야 환경에서의 도로 주행 환경 인식 성능 향상 연구

신연우¹, 전은솜² ¹서울과학기술대학교 글로벌테크노경영학과 학부생 ²서울과학기술대학교 컴퓨터공학과 교수

syw3159@seoultech.ac.kr, ejeon6@seoultech.ac.kr

Enhancing Driving Scene Perception in Limited Field of View via Language Guidance

Yoen Woo Shin ¹, Eun Som Jeon ²

¹Dept. of GTM, SeoulTech

²Dept. of Computer Science and Engineering, SeoulTech

요 약

자율주행 시스템의 도로 주행 환경 인식 모델은 사각지대 등 시야가 제한된 상황에서 성능이 저하된다. 본 연구는 제한된 시야 환경의 이미지 의미론적 분석에서 다양한 유형의 언어 가이던스 의 효과성을 분석한다.

1. 서론

도로환경 인식에서 사각지대 등 제한된 시야 상황은 빈번히 발생하지만, 제약적인 정보로부터 효과적인 인식 성능을 취득하는 것에는 어려움이 있다. 본연구는 언어적 가이던스를 의미론적 분할 모델에 함께 활용하여 강인한 모델 설계를 목표로 한다. 특히, LLM 을 통해 취득한 언어를 유형화하고 제한된 시야환경에서 영상 인식 성능 향상에 가장 효과적인 언어정보 유형을 분석한다.

2. 실험

2.1 Framework

Yuxiang Ji et al. [1]가 제안한 프레임워크를 기반으로 영상 인식에서의 언어 정보의 유형별 효과성에 대해분석한다 (그림 1). 주석 Y 에서 클래스별 마스크 M와 텍스트 프롬프트 C를 구성하여 조건부 DIFF 모듈 $F_{condiff}$ 에서 잠재변수 I를 예측한다. 이때 ϕ 는 사전학습 된 확산모델이다. 다중 시간-스케일 잠재변수를 학습 가능한 성곱층으로 집계해 분할헤드 D에 입력하며, 다음 수식을 통해 합성곱층과 분할헤드를 학습한다: $L_{condit} = CD(D(F_{condiff}(X, M, C)), Y)$ 비조건부 분기 $F_{uncondiff}$ 를 도입해 추론시 프롬프트

독립성을 유지한다:

 $L_{consis} = \|D(F_{condiff}(X, M, C), D(F_{uncondiff}(X)))\|$ 총 손실은 $L_{total} = \lambda_1 L_{condit} + \lambda_2 L_{consis}$ 로 정의되며, 분기간 가중치 공유로 지식을 증류시킨다.

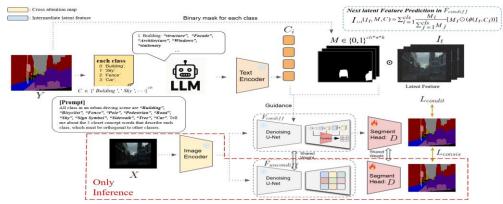
2.2 LLM for Prompt

GPT-4 [2]를 활용해 각 클래스마다 4 가지 유형의 프롬프트를 생성하였다. 프롬프트 유형은 아래와 같으며, 생성 결과는 <표 2>와 같다.

- Label: 클래스명 그대로 사용
- Sentence: 클래스에 대한 일반적 문장 표현
- Bag of words: 각 클래스를 표현하는 일반적 단 어 표현 4개와 클래스명 1개
- Orthogonal concept: 오직 각 클래스만을 표현하는 고유 단어 표현 4개와 클래스명 1개

2.3 실험설정

NVIDIA GeForce RTX4090(24GB)과 256GB RAM 환경에서 CamVid 데이터셋 [3]으로 실험하였다. CamVid는 11 개 클래스와 701 개 이미지로 구성된다. 512x384 의해상도에서 2-fold [4] 교차 검증을 적용한다. Stable diffusion v2-base [5]를 backbone, DAFormer [6]를 head 로사용하고 배치크기 1,30K iteration, AdamW 옵티마이저로 학습하였다.



(그림 1) 전체 프레임워크

<표 1> 유형별 프롬프트 생성 결과

(표 I/ ㅠㅎ된 그룹그는 '8'8 전략									
Label	Sentence	Bag of words	Orthogonal Concept						
'Sky'	The area above the earth, usually blue during the day with clouds.'	'Sky', 'Cloud', 'Blue', 'Sun', 'Daylight'	'Sky', 'Atmosphere', 'Horizon', 'Clouds', 'Airspace'						
'Building'	'A tall structure made of concrete and glass that houses offices and apartments.'	'Building', 'Concrete', 'Window', 'Foundation', 'Architecture'	'Building', 'Facade', 'Structure, 'Windows, 'Architecture'						
'Pole'	'A vertical post used to support electrical wires or street lamps.'	'Pole', 'Metal', 'Wire', 'Cable', 'Support'	'Pole', 'Slender', 'Vertical', 'Cable', 'Metallic'						
'Road'	'A paved surface for vehicles to drive on, often marked with lanes'	'Road', 'Drive', 'Path', 'Route', 'Street'	'Road', 'Asphalt', 'Lane', 'Driveway', 'Trafficway'						
'Sidewalk'	'A paved path beside the road for people to walk safely.'	'Sidewalk', 'Pavement', 'Path', 'Walkway', 'Walk'	'Sidewalk', 'Curb', 'Walkway', 'Pedway', 'Paving'						
'Tree'	'A tall plant with a trunk, branches, and leaves providing shade.'	'Tree', 'Branch', 'Leaf', 'Forest', 'Wood'	Tree', 'Foliage', 'Trunk', 'Branches', 'Canopy'						
'Signsymbol'	'A traffic sign or symbol used to guide or warn drivers and pedes- trian.'	'Signsymbol', 'Traffic', 'Board', 'Sign', 'Marker'	'Signsymbol', 'Traffic sign', 'Pictogram', 'Instruction', 'Regulation'						
'Fence'	'A wooden or metal barrier that encloses a yard or property.'	'Fence', 'Wood', 'Barrier', 'Boundary', 'Post'	'Fence', 'Pickets', 'Barrier', 'Boundary', 'Perimeter'						
'Car'	'A motor vehicle with four wheels used for transportation.'	'Car', 'Wheel', 'Door', 'Engine', 'Tire'	'Car', 'Vehicle', Windshield', 'Engine', Parking'						
'Pedestrian'	'A person walking on the sidewalk or crossing the street.'	'Pedestrian', 'Walk', 'Food', 'Step', 'Crossing'	'Pedestrian', 'Crosswalk', 'Footsteps', 'Walker', 'Striding'						
'Bicyclist'	'A person wearing a helmet riding a bicycle on the street.'	'Bicyclist', 'Rider', 'Wheels', 'Cycling', 'Path'	'Bicyclist', 'Helmet', 'Pedals', 'Wheels', 'Cycling'						

3. 결과 및 결론

실험 결과(<표 1>, (그림 2)), 대개 문장 유형이 가장 뛰어난 성능을 보였으며, Orthogonal 유형은 이미지만 사용한 경우와 유사한 성능을 나타냈다. (그림 2)의 도보영역과 같이 가려진 부분에서 Sentence 와 Bag of words 에서 더 효과적임을 확인했다.

Sentence 의 다양한 객체와 술어가 여러 클래스에 어텐션을 형성하여 편향된 어텐션이 발생한다. 이러한 편향된 어텐션이 백생한다. 이러한 편향된 어텐션이 객체 간 관계 정보를 포함하고, 노이즈 예측 시에 반영되어 제한된 시각 정보 상에서 더 높은 성능을 달성한 것으로 해석된다. 반면 Orthogonal 은 각 클래스에만 집중된 어텐션을 보여클래스 간 관계성을 활용하지 못하므로, 제한된 시각환경에서 성능저하가 발생한것으로 분석된다.

<표 2> 프롬프트 유형별 성능지표

·표 2/ 그룹그그 게 3일 30시표									
Prompt	Sidewalk	Signsy- mbol	Bicyclist	PA	mPA	FW IoU	mIoU		
Label	85.70	35.63	79.71	93.21	78.39	87.63	71.60		
Sentence	86.51	38.76	78.59	93.23	78.76	87.69	71.70		
B of Words	86.83	36.49	78.17	93.32	78.16	87.83	71.49		
Orthogonal	86.10	38.40	72.96	93.21	78.86	87.66	71.04		
Image Only	85.87	35.65	75.91	93.17	78.30	87.56	71.03		
Higher Higher Higher									
(a) Image Only			(b) Label (c) Orthogonal		ıl				
1					73				
(d) Sentence			(e) Bag of words			(f) GT			
(그림 2) 프롬프트 유형별 예측 시각화									
참고문헌									

- [1] Yuxiang Ji, Boyong He, Chenyuan Qu, Zhuoyue Tan, Chuan Qin, and Liaoni Wu, "Diffusion Features to Bridge Domain Gap for Semantic Segmentation," in *ICASSP*, Hyderabad, India, 2025. pp. 1-5
- [2] OpenAI, "GPT-4 Technical Report," *arXiv:2303.08774*, 2023.
- [3] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla "Segmentation and recognition using structure from motion point clouds," *in ECCV*, Marseille, France, 2008, pp. 44–57.
- [4] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in *IJCAI*, Mo*ntreal*, Canada, 1995, pp. 1137-1145.
- [5] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, "High-resolution image synthesis with latent diffusion models," in *CVPR*, 2022, pp. 10684–10695.
- [6] L. Hoyer, D. Dai, and L. Van Gool, "Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation," in CVPR, 2022, pp. 9924–9935.