자동 목차 추출을 위한 생성형 인공지능 기반 모델의 파인튜닝에 관한 연구

권수빈¹, 원일용² ¹서울호서직업전문학교 컴퓨터공학과 학부생 ²서울호서직업전문학교 컴퓨터공학과 교수 puppy9718@naver.com, clccclcc@shoseo.ac.kr

A Study on Fine-Tuning Generative AI-Based Models for Automatic Table of Contents Extraction

Su-Bin Kwon¹, Il-Young Won², ¹Dept. of Computer Science, Hoseo Vocational School ²Dept. of Computer Science, Hoseo Vocational School

요 익

본 연구에서는 주어진 문서에서 목차 구조를 자동으로 정확하게 추출하기 위해 LLM 기반 모델인 Qwen2.5-3B-Instruct 을 사용하여 파인튜닝 한 모델과 하지 않은 모델을 비교 분 석하였다. 실험 결과, 파인튜닝한 LLM 모델은 주어진 문서 환경에서 파인튜닝 전 모델보 다 뛰어난 구조적 일치도를 달성하였다.

1. 서론

방대한 문서에서 필요한 정보를 빠르게 찾으려면 명확한 목차 구조가 필요하다. 그러나 실제 보고서 는 비표준 형식이거나 스캔본으로 제공되는 경우가 많아, 목차 정보 추출이 쉽지 않다 [1].

본 연구는 생성형 AI의 파인튜닝을 통해 연구 보고서에서 계층적 목차구조를 효과적으로 추출하는 방법을 제안하고, 실험을 통해 효용을 검증하였다.

2장에서는 파인튜닝 및 사용한 기본 모델에 대해 설명하고, 3장에서는 실험 환경 및 실험 방법을 다 룬다. 4장에서는 실험 결과와 정량적 비교를 통해 제안 방법의 효과를 분석한다.

2. 관련지식

2.1 파인 튜닝

파인튜닝은 사전학습(pre-trained)된 언어 모델을 특정 다운스트림 태스크에 맞추어 추가 학습하는 과 정이다. 파인튜닝은 전체 파라미터 업데이트뿐만 아 니라 LoRA, Adapter 등 파라미터 효율적 방법 (PEFT)도 도입되어 효율성과 성능을 모두 추구한다 [2]. 특히 Supervised Fine-Tuning(SFT)은 입력-출 력 쌍 데이터로 모델의 안전성, 도메인 특화 성능을 높이는 데 주로 사용되며, Alpaca, Qwen2.5 등 다양한 모델에 적용되고 있다[3].

2.2 Qwen2.5-3B-Instruct

본 연구에서는 Qwen2.5-3B-Instruct 모델을 기본 언어 모델로 선정하였다. Qwen2.5-3B-Instruct는 약 30억 파라미터의 instruction-tuned 언어 모델로, 29개 이상의 다양한 언어를 지원 및 실용적 성능을 보인다. 제한된 자원 환경에서도 효율적인 학습과 추론이 가능하도록 QLoRA 기반 4비트 양자화를 적용하였다. 4비트 양자화는 모델의 메모리 사용량과 연산량을 크게 줄이면서도, 성능 저하를 최소화할수 있는 장점이 있다 [4].

3. 실험 환경 및 방법

3.1 실험환경

본 연구의 실험은 고성능 원격 서버 환경에서 수행되었다. 하드웨어는 NVIDIA RTX 4090 GPU를 사용하였으며, 소프트웨어 환경은 Python 3.10.12와 CUDA 12.1로 구성하였다. 모델 학습과 평가를 위해다음과 같은 주요 라이브러리를 활용하였다.

<표 1> 주요 라이브러리

라이브러리	설명		
transformers	Hugging Face에서 만든 자연어 처리 (NLP) 및 생성형 AI 모델들을 쉽게 사 용하고 학습할 수 있게 해주는 라이브 러리		
peft	형 언어 모델을 적은 파라미터만 수정 하여 효율적으로 미세 조정 (Fine-Tuning)할 수 있게 돕는 라이 브러리	0.10.0	
trl	트랜스포머 모델에 강화학습 기법을 적용하는 라이브러리	0.8.6	
accelerate	PyTorch 및 TensorFlow 모델을 다 양하 하드웨어(GPU, TPU, 멀티 GPU		
triton	NVIDIA가 만든 딥러닝 커널 최적화 및 GPU 커스텀 커널을 쉽게 작성할 수 있도록 하는 라이브러리	3.3.1	

3.2 데이터셋

본 연구는 2021~2024년 한국문화관광연구원 연구보고서 약 250건에서 목차 포함 페이지만 추출해 데이터셋을 구성하였다. 추출한 목차 데이터를 계층구조와 페이지정보가 포함된 통일된 포맷으로 정제했다. 전체 데이터셋은 8:2로 훈련과 테스트용으로 나눴다. 또한 '제1장', '제1절', '1.1' 등의 패턴을 기반으로 목차의 단계별 깊이(장·절·항)를 구분하도록 구성하였다.

(그림 1) 데이터셋 일부 형식

3.3 하이퍼파라미터 설정

본 연구에서는 Qwen2.5-3B-Instruct 모델을 문서 목차 계층 구조 추출 태스크에 Supervised Fine-Tuning(SFT) 방식을 적용하였다. 학습에는 SFTTrainer, 4비트 QLoRA 양자화와 LoRA 기법을 적용해메모리 효율성과 태스크 적응을 모두 확보했다. 주요 하이퍼파라미터는 표 2와 같다.

<표 2> 하이퍼파라미터

하이퍼파라미터 설명		갋
per_device_train _batch_size	e 는 미니배치 크기	
gradient_accumu lation_steps		

num_train_epoc	전체 훈련 데이터셋에 대해 반복	2	
hs	하는 에포크(횟수) 수	3	
learning_rate	학습률로, 모델 가중치를 업데이	2e-4	
	트할 때 적용하는 보폭 크기		
	몇 스텝마다 학습 로그(예: 손실,		
	정확도 등)를 출력할지 결정하는	5	
	값		
save_total_limit	체크포인트로 저장할 최대 개수	2	
save_strategy	모델 체크포인트 저장 방식을 지 정	"epoch"	
fp16	16비트 반정밀도(floating point	True	
	16) 사용 여부		
report_to	학습 로그를 보고할 대상	"none"	

4. 실험 결과 및 분석

실험 결과, 테스트 데이터 50건에서 파인튜닝된 모델은 목차 구조 생성 결과와 실제 정답 간 평균 유사도(TEDS) 0.89를 달성했다. 베이스모델, GPT 계열 대비 구조적 일치도가 뛰어났으며, 실제 문서 환경에서도 신뢰할 수 있는 수준임을 확인했다.

<표 3> 평가

성능평가 모델 평가지표	파인튜닝 전 모델	파인튜닝 후 모델	chat gpt
Teds	0.27	0.89	0.79
llm	0.31	0.91	0.83

5. 결론

본 연구는 생성형 AI 기반 파인튜닝 기법으로 비정형 문서의 목차 정보를 효과적으로 구조화할 수 있음을 실험적으로 입증했다.

향후 연구에서는 적용 범위를 확대하고 새로운 형식에 대응하는 모델로 발전시킬 필요가 있다.

참고문헌

- [1] Pengfei Hu et al., "Multimodal Tree Decoder f or Table of Contents Extraction in Document Ima ges", ICPR2022, Montréal, Canada, 2022, 1756 - 1762 [2] Andre Storhaug, Jingyue Li, "Parameter-Efficie nt Fine-Tuning of Large Language Models for U nit Test Generation: An Empirical Study", arXiv p reprint, arXiv:2411.02462, 2024
- [3] Long Ouyang et al., "Training language model s to follow instructions with human feedback", ar Xiv preprint, arXiv:2203.02155, 2022
- [4] Qwen, "Qwen2.5-3B-Instruct", Hugging Face, https://huggingface.co/Qwen/Qwen2.5-3B-Instruct, 2024