ACK 2024 st=dtErf3]| =2% (313 235)

1
=
"AE el A7 RS, st gEA] Fe AT e

wrhan@sor.snu.ac.kr, msyu@sor.snu.ac.kr, ypaek@sor.snu.ac.kr

Leveraging Reinforcement Learning for LLM-based
Automated Software Vulnerability Repair

Woorim Han!, Miseon Yu'!, Yunheung Paek!
"Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research Center
(ISRC), Seoul National University

Abstract

Software vulnerabilities impose a significant burden on developers, particularly in debugging and
maintenance. Automated Software Vulnerability Repair has emerged as a promising solution to mitigate these
challenges. Recent advances have introduced learning-based approaches that take vulnerable functions and their
Common Weakness Enumeration (CWE) types as input and generate repaired functions as output. These
approaches typically fine-tune large pre-trained language models to produce vulnerability patches, with
performance evaluated using Exact Match (EM) and CodeBLEU metrics to assess similarity to ground-truth
patches. However, current methods rely on teacher forcing during fine-tuning, where the model is trained with
ground-truth inputs, but during inference, inputs are generated by the model itself, leading to exposure bias.
Additionally, while models are trained using the cross-entropy loss function, they are evaluated using discrete,
non-differentiable metrics, resulting in a mismatch between the training objective and the test objective. This
mismatch can yield inconsistent results, as the model is not directly optimized to improve test-time performance
metrics. To address these discrepancies, we propose the use of reinforcement learning (RL) to optimize patch
generation. By directly using the CodeBLEU score as a reward signal during training, our approach encourages the
generation of higher-quality patches that align more closely with evaluation metrics, thereby improving overall
performance.

1. Introduction As shown in table 1, rather than employing large language
models (LLMs) with an extensive number of parameters,
recent studies have demonstrated the effectiveness of fine-
tuned models in learning mappings from vulnerable code to
repaired code [1]. Among the tunable models, CodeT5 have
gained substantial popularity and achieved state-of-the-art
performance in vulnerability patch generation [1][2].

In recent years, the rising number and complexity of
software vulnerabilities have significantly increased the
susceptibility of software systems to attacks. Traditional
methods for addressing these vulnerabilities often rely
heavily on the manual efforts of developers, which requires
considerable time and resources for identifying and resolving

security flaws. To mitigate the challenges associated with Type Approach EM BLEU CodeBLEU
manual vulnerability resolution, Automated Vulnerability pre-trained CodeBERT [16] 39 39 122
. . .. + bug-fixing and CWE data 7.3 6.3 22,0
Repair (AVR) techniques have emerged as a promising " GraphCodeBERT (23]~~~ 36 ~ 20 99
solution for automatically detecting and fixing vulnerabilities. ¢ bugfixing and CWEdata_ 81 _ 52 _ 167
R PolyCoder [80] 35 43 9.9
Typically, AVR methods follow three core stages: _+bug-fixingand CWEdata 9.9 149 304
1. . . . CodeGen [54] 7.0 4.7 12.1
vulnerability localization, patch generation, and patch + bug-fixing and CWE data 122 17.4 303
At . " Codereviewer [44] Y 335
Yahd.a.tlon. Arr'lon'g these? the quality of the generated patches bugfingand CWEdata_ 102 130 320
is critical, as it directly influences the overall success of the CodeTs [74] 102~ 213 325
. . . + bug-fixing and CWE data 16.8 24.2 35.3
repair process. As a result, considerable attention has been gxing
. . LLM GPT-3.5 [57] 3.6 8.8 17.6
devoted to developing AVR techniques that focus on GPT-4 [58] 53 97 16.6
producing more accurate and effective patches. <Table 1> Model performance of LLMs.

- 290 -

ACK 2024 st=dtErf3]| =2% (313 235)

The state-of-the-art vulnerability patch generation
models [1][2] are trained using teacher forcing, where the
model generates sequences based on ground-truth inputs
during training. However, this approach leads to exposure
bias, as the model must rely on its own predictions during
inference, which can cause errors to accumulate. Another key
issue is the mismatch between the training objective and
evaluation metrics. While models are trained using cross-
entropy loss, they are evaluated using non-differentiable
metrics like Exact Match (EM) and CodeBLEU, creating
inconsistency between what the model optimizes during
training and how it is assessed at test time. These
discrepancies can result in suboptimal performance and
necessitate new approaches to better align training and
evaluation.

To address this mismatch, we propose a solution that
incorporates during training.
Specifically, we directly optimize the CodeT5 model for
CodeBLEU metrics using reinforcement learning, which
better aligns the model with its evaluation criteria and
improves consistency between training and test-time
performance.

evaluation measures

2. Preliminaries
A. Automated Software Vulnerability Repair

A Software vulnerability repair task involves identifying
and fixing security vulnerabilities within software code.
These vulnerabilities can vary in complexity, ranging from
simple issues such as improper input validation or weak error
handling to more critical problems like buffer overflows,
SQL injection, and cross-site scripting (XSS) attacks. Such
vulnerabilities, if left unaddressed, can expose software
systems to malicious exploits, leading to significant security
risks, including data breaches and unauthorized access.

The repair process typically involves several key steps:
analyzing the codebase to identify areas that are vulnerable,
determining the underlying causes of the vulnerabilities, and
applying appropriate fixes that mitigate these risks. In recent
years, automated approaches have emerged as a promising
solution to this problem, leveraging advanced computational
models to generate patches for the identified vulnerabilities.
These approaches often rely on large language models
(LLMs), which are trained on vast datasets of code and are
capable of suggesting and applying fixes for various security
flaws with minimal human oversight, accelerating the
process of securing software systems.

B. Problems with Training Large Language Models

Training large language models (LLMs) poses several

challenges, particularly in sequence or patch generation tasks.

One of the most widely used methods to train the decoder for
these tasks is the teacher forcing algorithm. This approach

minimizes the maximum-likelihood loss at each decoding
step by training the model with the ground-truth sequence of
tokens. Specifically, at each step, the model receives the
actual previous token (rather than its own predicted token) as
input to predict the next token in the sequence. While this
method is effective during training, it introduces a significant
limitation during inference.

Another key problem with training LLMs for patch
generation is the mismatch between training and evaluation
objectives. During training, the model is optimized using a
loss function such as cross-entropy loss, which focuses on
token-level accuracy. However, at test time, the model is
evaluated using discrete, non-differentiable metrics such as
Exact Match (EM) and CodeBLEU. This discrepancy often
leads to inconsistent performance, as the model is not
directly trained to optimize these test-time metrics.

To address this issue, we leverage reinforcement
learning to optimize patch generation. Instead of relying
solely on ground-truth inputs, the model is optimized through
trial and error using a reward signal that reflects the quality
of the generated output.

C. Reinforcement Learning for Sequence Generation

Reinforcement learning (RL) has demonstrated
significant success in various sequence generation tasks [3],
making it highly relevant to vulnerability patch generation.
In these domains, RL approaches are employed to optimize
models by exploiting signals from non-differentiable task-
specific metrics. For instance, earlier works have used the
REINFORCE algorithm to directly optimize models for
sequence-based evaluation metrics such as BLEU and
ROUGE in translation tasks. By using RL, these models are
able to bypass traditional loss functions and instead focus on
improving performance based on the actual metrics used for
evaluation, thereby achieving more consistent and robust
results.

We apply RL to the task of automated software
vulnerability repair. In our approach, we use RL to directly
optimize the model for CodeBLEU scores, which are more
closely aligned with real-world evaluation metrics for patch
generation.

Bugfix Vulnerability
Corpus Corpus
l
LLM Pretrained RL agent _| Finetuned
LLM (LLM) LLM

(Fig 1) Overview of Our Approach.

3. Our Approach

3.1 Vulnerability Patch Generation

Automated Software Vulnerability Repair can be viewed

- 291 -

ACK 2024 st=dtErf3]| =2% (313 235)

as a vulnerability patch generation task of large language
models. This task involves taking a vulnerable code sequence
X as input and generating a corresponding patched code

sequence Y = (§1,..,9r) to fix the identified vulnerabilities.

During training, the model's parameters 8 are learned by
maximizing the likelihood of the ground-truth patch
sequence Y = (y1,..,yr). The objective is to minimize the
cross-entropy loss, which is formulated as:

Le.(0) = —Zlogpg(Y|X) = — Zlogpﬂ(y1|yl:t—lyx)
1 1

This loss function encourages the model to generate patched
code sequences that closely match the ground-truth
sequences based on the given input.

3.2 Pretraining the LLM on Bugfix Corpus

We utilize CodeT5 as the backbone model for our
approach due to its widespread popularity and state-of-the-art
performance in vulnerability patch generation tasks [1, 2]. To
further enhance the model's effectiveness, we first pretrain it
on a large bug-fix corpus before fine-tuning with a
vulnerability-specific dataset. This pretraining step is
informed by prior research [1, 4], which demonstrates that
initializing models with a related repair corpus significantly
improves their ability to generate accurate and effective
patches for vulnerable code. This process is illustrated in (fig
1), where the model is first pretrained with the bug-fix
corpus, then fine-tuned using RL with the vulnerability
corpus to refine its patch generation capabilities. This dual-
phase training approach helps the model better generalize to
various types of wvulnerabilities by leveraging learned
patterns from previous bug fixes.

3.3 Patch Generation as a RL Problem

We propose to formulate patch generation as a RL
problem and apply the REINFORCE algorithm to improve
the performance of a pretrained model. We treat the model
parameters 6 as a stochastic policy that predicts the next
token at each step in the sequence. After each prediction
(action), the model updates its hidden state, which informs
the policy’s decision for subsequent decoding steps. Upon
completing the sequence, the generation of the patched code,
the model receives a reward based on the CodeBLEU score
of the generated patch. The objective of RL fine-tuning with
the REINFORCE algorithm is to minimize the expected
negative return, as described by the objective function:

L4(0) = —Eysp, [r(Y?)]

REINFORCE and policy
gradient theorem [5], the gradient estimation is defined as:

Following the algorithm,

Vo Ln(0) ~ —Eyip, [r(Y*) Vo log pg(Y?| X))

~ —Eyop, |1(Y*) Y Vologpo(y;[yie-1, X)
t

4. Evaluation
4.1 Dataset

We evaluated our method using the combined CVEFixes
and Big-Vul datasets, also employed by state-of-the-art
approaches VulMaster [1] and VulRepair [2]. The merged
dataset includes 8,482 pairs of vulnerable C/C++ functions
and their corresponding fixes, collected from 1,754 open-
source projects spanning 1999 to 2021. As in previous
studies, the data is divided into training (70%), testing (20%),
and validation (10%) subsets.

4.2 Evaluation Metric

In line with previous studies [1, 2], we use Exact Match
(EM) and CodeBLEU as our evaluation metrics. EM
measures the percentage of generated code that exactly
matches the ground truth token sequence. CodeBLEU, a
variant of the traditional BLEU score, is specifically
designed for source code by incorporating code structure into
the evaluation, offering a more nuanced assessment of code

quality.

4.3 Baseline

We evaluate our approach against VulRepair and
VulMaster. VulRepair, introduced by Fu et al. [2], is a T5-
based method for automated vulnerability repair, which
improves upon the limitations of the previous model,
VRepair [4], by enhancing the model's ability to learn token
positions and generate novel tokens necessary for patching.
VulRepair uses Byte-Pair Encoding for subword tokenization
and leverages the TS5 architecture to encode inputs and
generate patches. The model is fine-tuned on a combined
vulnerability repair dataset and generates patches during
inference by applying its learned repair strategies.

Zhou et al. [1] present VulMaster, a CodeT5-based
approach for automatic vulnerability repair that is
specifically designed to process entire vulnerable code
segments, regardless of their length. VulMaster incorporates
the Fusion-in-Decoder (FiD) framework to address the input
length limitations inherent in transformer-based models. By
utilizing multiple encoders, it efficiently handles long
sequences of vulnerable code, enabling more effective repair
of vulnerabilities.

4.4 Results

The evaluation results of our RL approach alongside the
baseline models, VulRepair [2] and VulMaster [1], are
presented in <Table 2, 3>. Performance is evaluated using
two key metrics: Exact Match (EM) and CodeBLEU. It is
important to note that our training method, which modifies
the loss function, can be seamlessly applied to both
VulMaster and VulRepair, potentially improving their

- 292 -

ACK 2024 st=dtErf3]| =2% (313 235)

performance as well.

In Table 2, we observe that applying RL to VulRepair
leads to a modest improvement in the Exact Match (EM)
score, increasing from 18.05 to 19.29, while the CodeBLEU
score remains unchanged at 0.5. Similarly, Table 3 shows
that applying RL to VulMaster results in a slight increase in
the EM score from 20.16 to 20.72, with the CodeBLEU score
remaining steady at 0.53. These results suggest that while RL
introduces minor improvements in token-level accuracy
(EM), it has little to no effect on the structural quality of the
generated patches as measured by CodeBLEU.

| ____Approach __EM _____CodeBLEU _
VulRepair [2] 18.05 0.5
VulRepair + RL 19.29 0.5

<Table 2> Comparison of repair performance with VulRepair [2].

| ____Approach EM_______ CodeBLEU _ |
VulMaster [1] 20.16 0.53
VulMaster + RL 20.72 0.53

<Table 3> Comparison of repair performance with VulMaster [1].

5. Conclusion

In this work, we explored the application of reinforcement
learning to vulnerability patch generation with the goal of
improving the repair capabilities of pretrained language
models. While RL was intended to enhance the model’s
ability to generate more accurate and effective patches by
optimizing for CodeBLEU, our experiments revealed that the
RL approach had only a marginal impact on performance.
The improvements in repair capability were modest,
suggesting that further refinement of the RL framework or
additional techniques may be necessary to achieve
substantial gains in this domain. Despite this, the study
contributes valuable insights into the complexities of using
RL for wvulnerability patch generation and lays the
groundwork for future research.

ACKNOWLEDGEMENT

This work was supported by the BK21 FOUR program of the
Education and Research Program for Future ICT Pioneers,
Seoul National University in 2024 and was supported by the
National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (RS-2023-00277326). Also,
this work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
under the artificial intelligence semiconductor support
program to nurture the best talents (IITP-2023-RS-2023-
00256081) grant funded by the Korea government(MSIT)
and was supported by Inter-University Semiconductor
Research Center (ISRC). This work was supported by the
Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea

government(MSIT) (No.RS-2024-00438729, Development
of Full Lifecycle Privacy-Preserving Techniques using
Anonymized Confidential Computing).

References

[1] Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, and
David Lo. Out of Sight, Out of Mind: Better Automatic
Vulnerability Repair by Broadening Input Ranges and
Sources. In 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE). IEEE
Computer Society, 872—872.

[2] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van
Nguyen, and Dinh Phung. VulRepair: a T5-based
automated software vulnerability repair. In Proceedings
of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering. 935-947.

[3] Le, Hung, et al. "Coderl: Mastering code generation
through pretrained models and deep reinforcement
learning." Advances in Neural Information Processing
Systems 35 (2022): 21314-21328.

[4] Zimin Chen, Steve Kommrusch, and Martin Monperrus.
2022. Neural transfer learning for repairing security
vulnerabilities in ¢ code. IEEE Transactions on Software
Engineering 49, 1 (2022), 147-165.

[5T R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

- 293 -

