ACK 2023 정보처리학회 추계학술대회

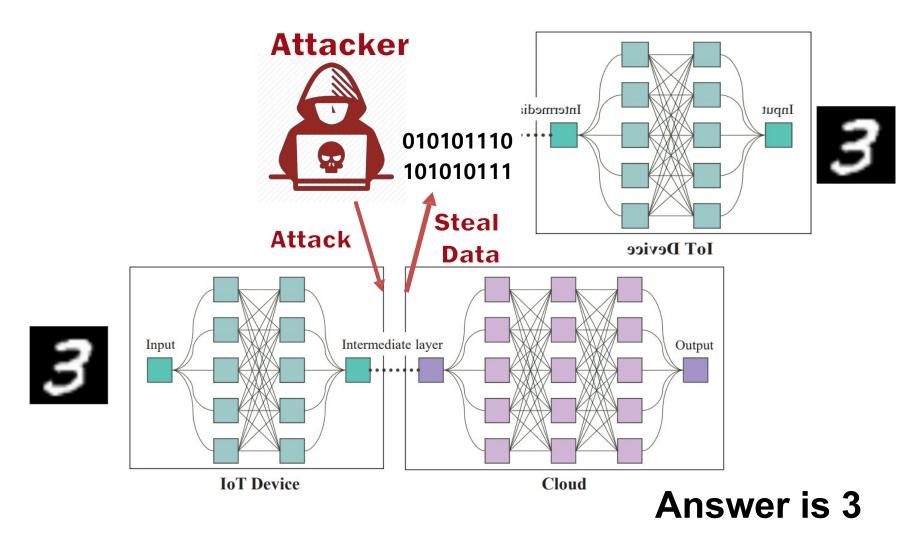
Can differential privacy practically protect collaborative deep learning inference for loT?

Jihyeon Ryu

2023.11.3

Kwangwoon University
School of Computer and Information Engineering
Cryptography & Cyber Security Lab

Overview



Introduction (Motivation)

[글로벌] 페이스북, 사생활 침해 논란 얼굴인식 프로그램 사용 중단키로

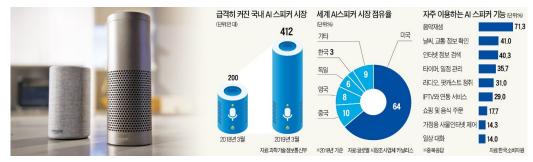
ీ 내가 한 말 녹음해 음성인식률 강화?...Al 스피커 '사생활 침해' 논란

- 인공지능은 학습 과정에서 대량의 데이터가 사용되고 있어, 수집한 데이터에 대한 정보보호 관련 문제가 제기되고 있음
 - Facebook은 2020년 7월, 개인정보 보호법 위반에 6억 5천만달러의 합의금을 지불, 사생활 침해 논란으로 얼굴인식 프로그램을 사용 중단하기로 함
 - 인공지능 스피커의 음성 인식 수준을 높이기 위해 이용자의 목소리를 수집하며 사생활 침해 논란이 일어남
 - 2021년 1월, 인공지능 챗봇 '이루다' 는 학습과정에서 수집한 60만명의 문장에서 데이터 보호 조치가 빈약하여 특정인의 실명과 주소 등의 개인정보가 유출됨

Introduction (Motivation)

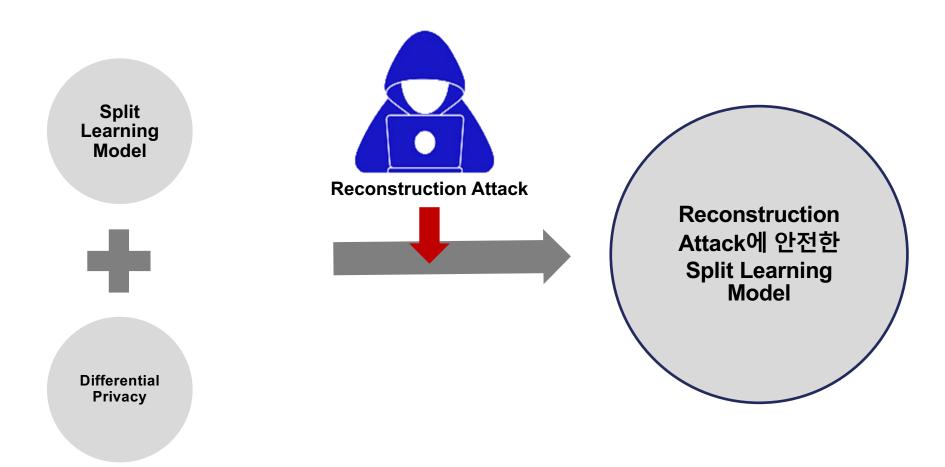
[글로벌] 페이스북, 사생활 침해 논란 얼굴인식 프로그램 사용 중단키로

『 내가 한 말 녹음해 음성인식률 강화?...AI 스피커 '사생활 침해' 논란



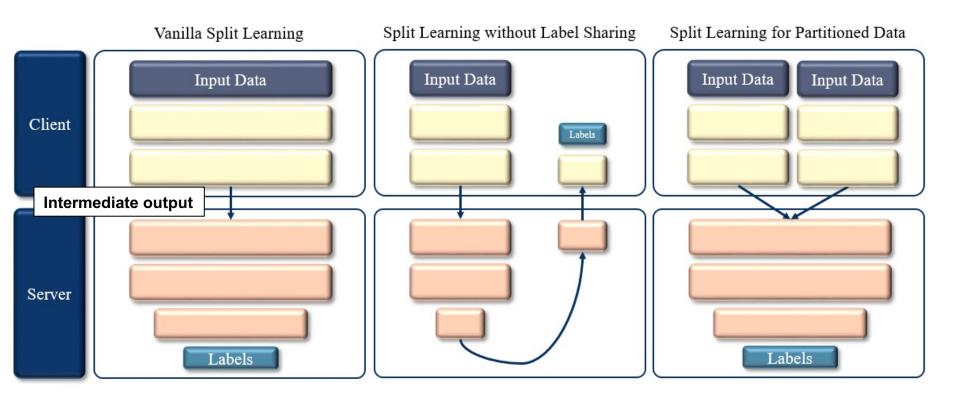
- 인공지능 학습을 위해 수집한 데이터 및 딥러닝 모델을 사용하기 위해 이용자가 제공한 데이터를 보호하기 위해, 데이터에 대한 보호 조치가 필요함
- 학습 데이터를 위한 보호를 위해 Split Learning이 제안됨

Introduction (Motivation)

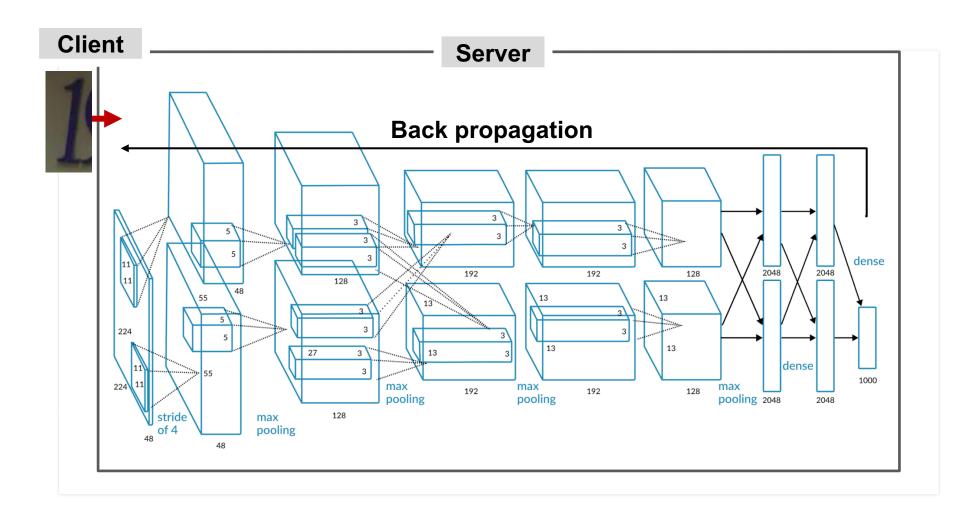


Background (Split Learning)

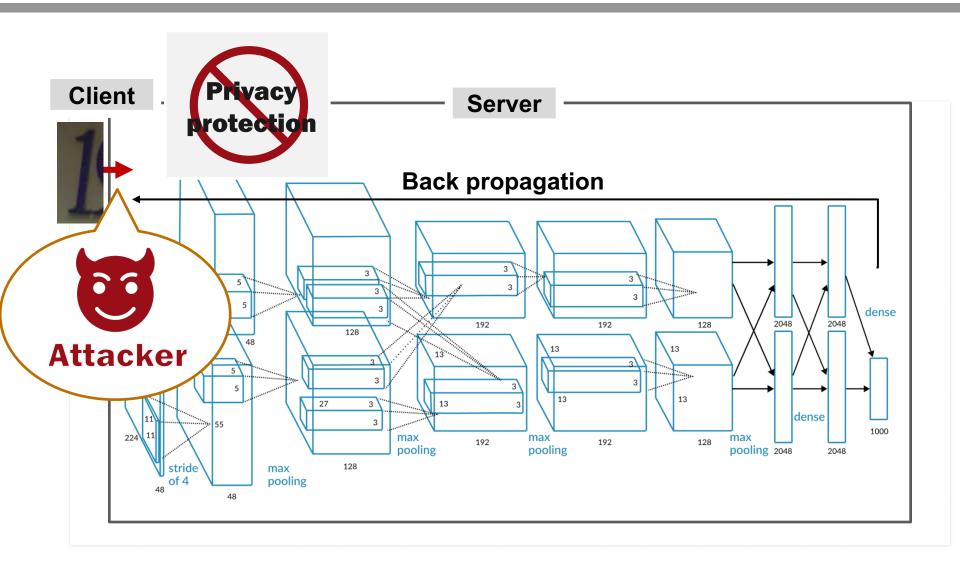
Split Learning



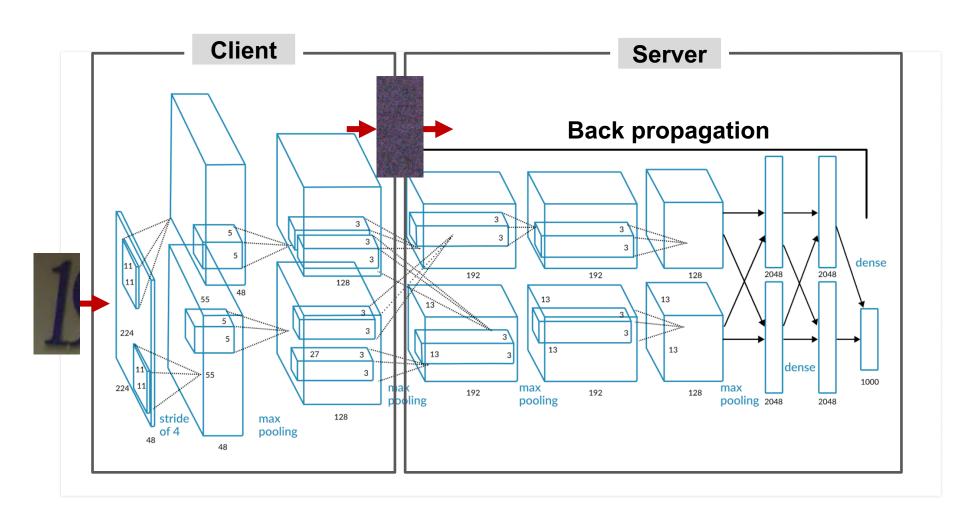
Neural Networks



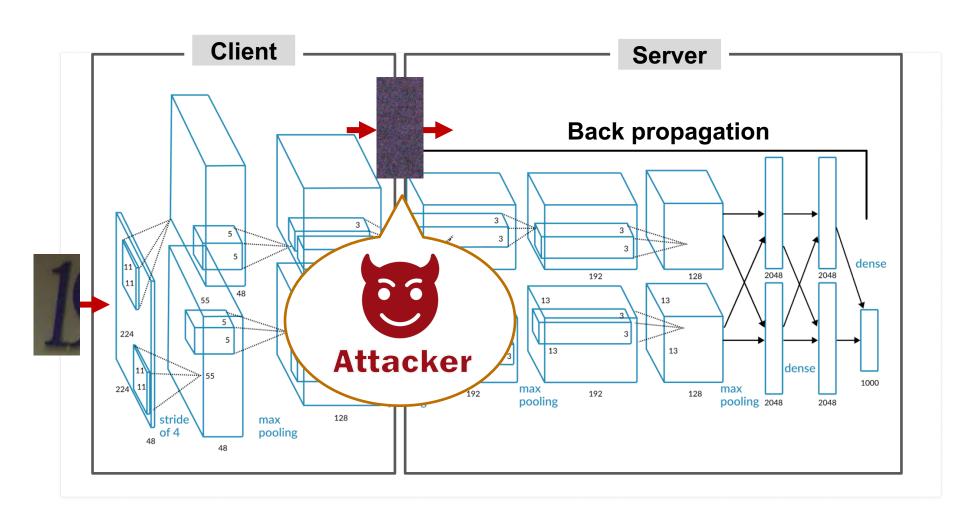
Attack on Neural Networks



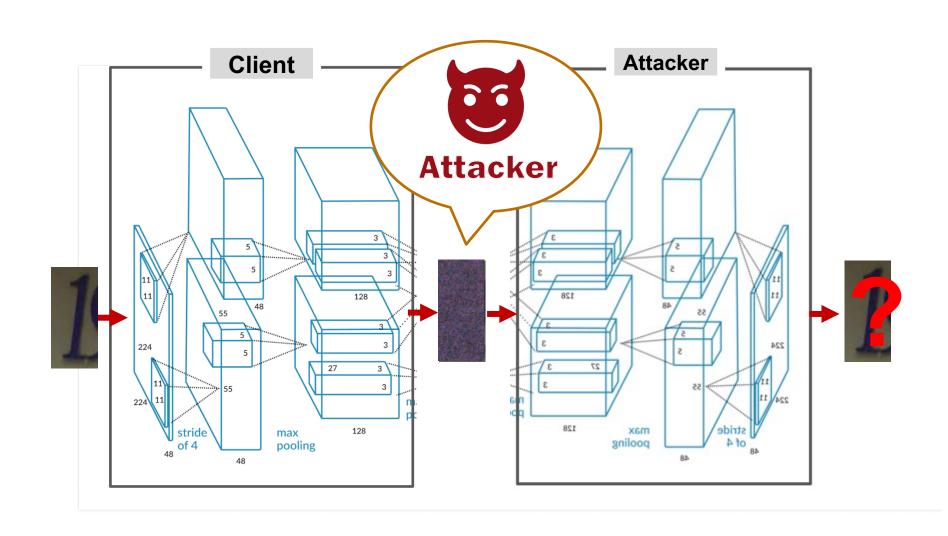
Split Learning



Attack on Split Learning



Reconstruction Attack



Background (Differential Privacy)

Differential Privacy

Define that there is a neighbor database when two databases have the same code except for one record *t*.

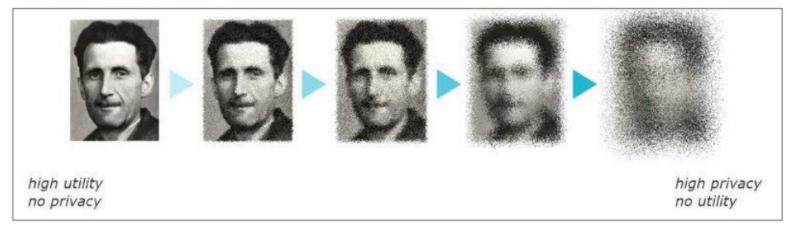
```
Definition 1. Given any two neighboring inputs D and D' which differ in only one data item, a mechanism M provides \epsilon-differential privacy if \Pr[M(D) \in S] \leq e^{\epsilon} \cdot \Pr[M(D') \in S].
```

- ϵ 이 0일 경우, 두 인접 데이터베이스에서 동일한 통계 결과가 나올 확률이 같음
 - 공격자는 통계 결과에서 절대 특정 레코드를 추론할 수 없음
- ϵ 이 무한대로 커질경우, 두 인접 데이터베이스에서 동일한 통계 결과가 나올 확률의 차이 가 커짐
 - 공격자는 통계 결과에서 특정 레코드를 추론하기 쉬움
- ϵ 값이 작아지면 프라이버시 정도가 높아지나 활용 가능성이 낮아지는 것이며, ϵ 값이 커지면 프라이버시 정도가 낮아지나 활용 가능성이 높아짐

Background (Differential Privacy)

Differential Privacy

 $\varepsilon = 100,000$ $\varepsilon = 0.5$

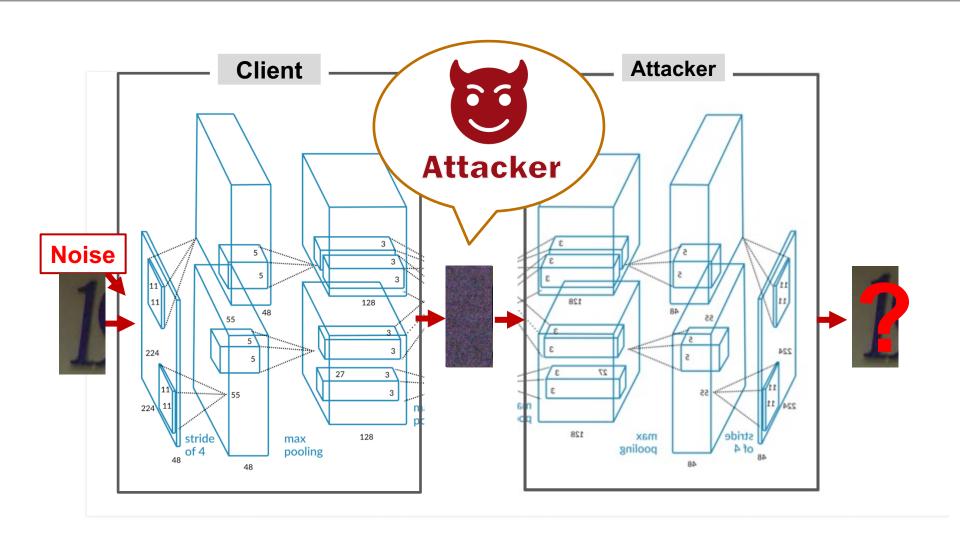


- ϵ 이 0일 경우, 두 인접 데이터베이스에서 동일한 통계 결과가 나올 확률이 같음
 - 공격자는 통계 결과에서 절대 특정 레코드를 추론할 수 없음
- ε이 무한대로 커질경우, 두 인접 데이터베이스에서 동일한 통계 결과가 나올 확률의 차이 가 커짐
 - 공격자는 통계 결과에서 특정 레코드를 추론하기 쉬움
- ϵ 값이 작아지면 프라이버시 정도가 높아지나 활용 가능성이 낮아지는 것이며, ϵ 값이 커지면 프라이버시 정도가 낮아지나 활용 가능성이 높아짐

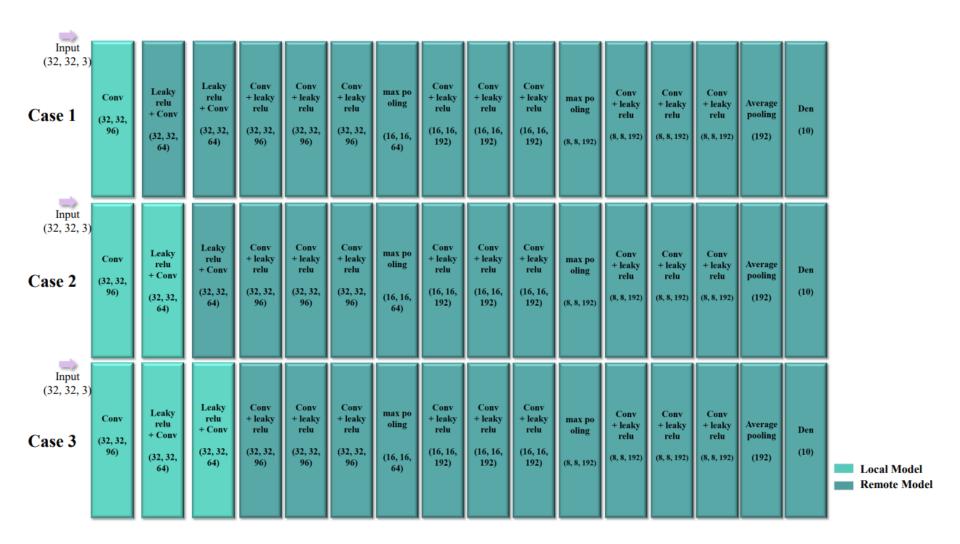
Split Learning with Differential Privacy



Reconstruction Attack on SL with DP



Models



Quantitative Metrics

MSE (Mean Square Error)

$$MSE(A, B) = \frac{1}{m \cdot n} \sum_{i, j = 1, 1}^{m, n} || A(i, j) - B(i, j) ||^{2}$$

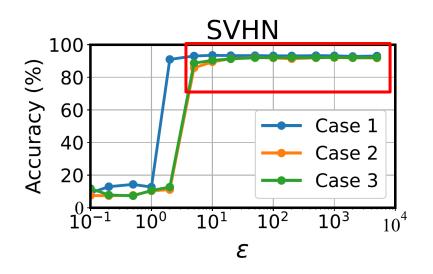
SSIM (Structural Similarity)

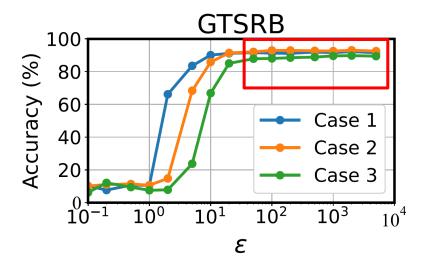
$$SSIM(A,B) = \frac{(2\,\mu_{A}\mu_{B} + C_{1})(2\sigma_{AB} + C_{2})}{(\mu_{A}^{2} + \mu_{B}^{2} + C_{1})(\sigma_{A}^{2} + \sigma_{B}^{2} + C_{2})}$$

Peak Signal to Noise Ratio (PSNR)

$$PSNR(A, B) = 10 \log_{10}(\frac{255^2}{MSE(A, B)})$$

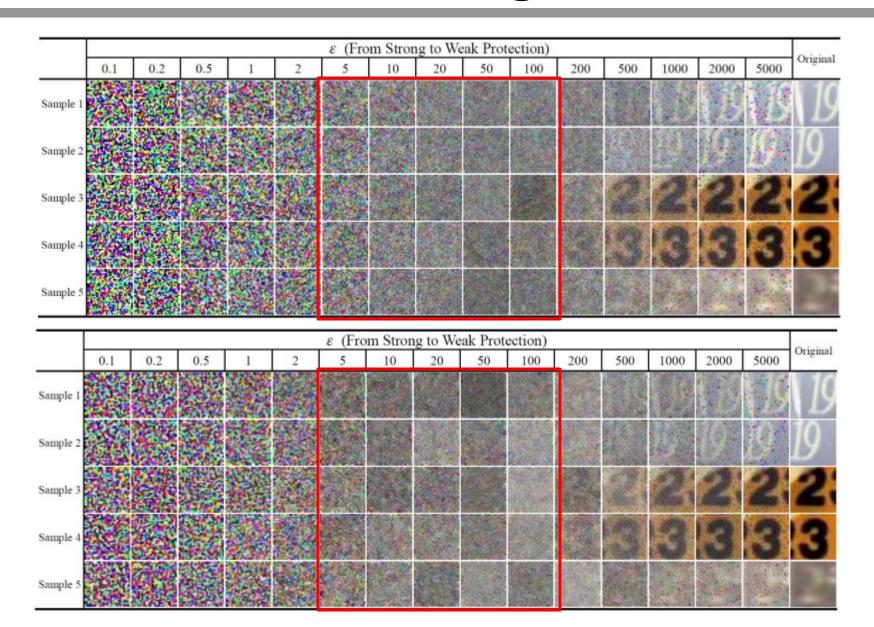
Accuracy



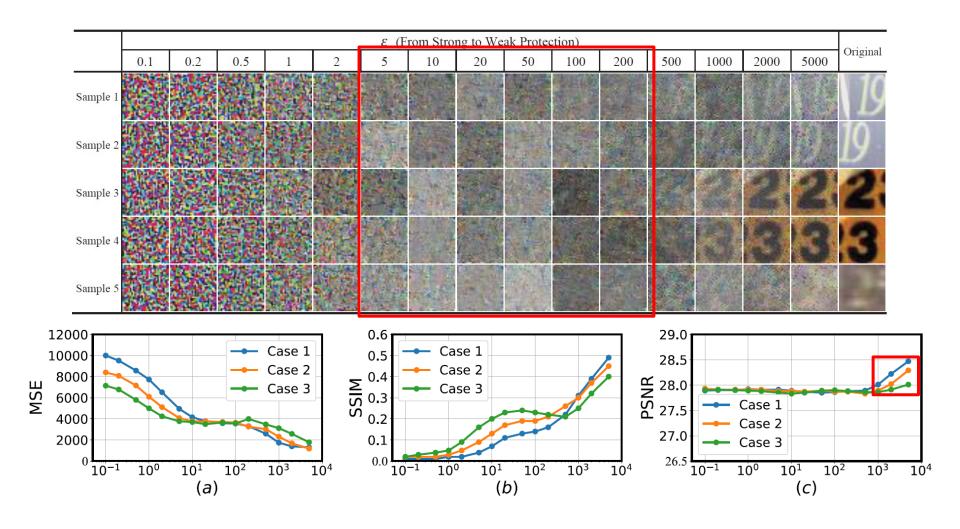


Model	SVHN	GTSRB	STL-10	CIFAR-10
Case 1	93.498%	92.676%	69.576%	82.932%
Case 2	92.695%	95.284%	67.448%	77.795%
Case 3	92.953%	92.869%	67.333%	84.500%
Average	93.049%	93.610%	68.119%	81.742%

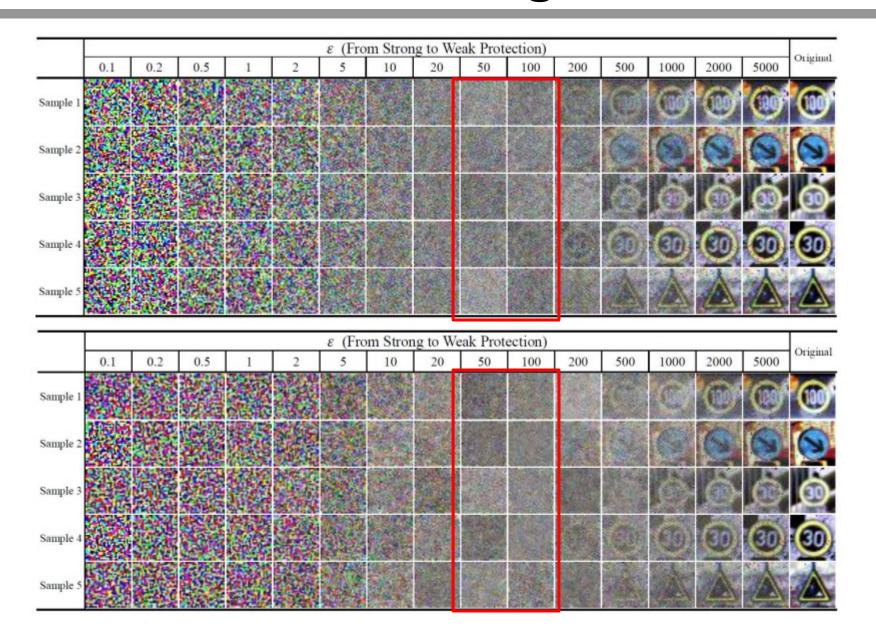
SVHN Attacking Results



SVHN Attacking Results



GTSRB Attacking Results



GTSRB Attacking Results

