
1. 서론

블록체인은 분산 및 공유 트랜잭션 원장이며, 합

의 프로토콜에 따라 블록체인 네트워크가 이루어진

다[1][2]. 비탈릭 부테린이 개발한 이더리움[3]은 블

록체인 기반의 오픈 소스 분산 컴퓨팅 플랫폼으로

이더리움 상에서 실행되는 프로그램인 스마트 컨트

랙트가 특징이다. 스마트 컨트랙트는 계약 조건을

소스 코드로 작성하여 자산을 관리하기 위한 규칙을

구현할 수 있다. 블록체인 네트워크에 배포된 스마

트 컨트랙트는 블록체인 무결성에 따라 변경이 불가

능하다. 따라서 프로그래밍적 결함이 있더라도 수정

이 불가능하므로 안전하지 않은 스마트 컨트랙트는

악용되어 심각한 손실을 줄 수 있다[4]. 이러한 스마

트 컨트랙트 보안을 위하여 개발자는 일반적으로 스

마트 컨트랙트를 실행하기 전 취약성 여부에 대한

테스트를 진행한다. 그러나 수동적인 코드 분석은

코드 수가 많고 취약성의 종류가 다양하고 복잡하여

효율성이 떨어진다. 따라서 본 연구에서는 소스 코

드 제어 흐름 그래프(Control Flow Graph)를 사용

하여 다중 취약성을 정확하고 효과적으로 동식 식별

하여 블록체인 플랫폼의 보안을 강화하고자 한다.

2. 연구 배경

스마트 컨트랙트를 구현하기 위하여 사용하는

Solidity는 객체 지향 고급 언어이다[5]. (그림 1)은

Solidity 언어로 작성한 bank를 구현하기 위한 예시

이다. 이러한 Solidity로 작성한 스마트 컨트랙트를

이더리움 블록체인에서 실행하기 위하여

EVM(Ethereum Virtual Machine)에서 실행 가능한

이더리움 바이트코드로 소스코드를 컴파일해야 한

다. 이더리움 바이트코드는 16진수 시퀀스로 표현되

며 EVM이 실행할 수 있는 최소 명령어인 opcode로

파싱할 수 있다[6]. EtherSolve[6]는 EVM 바이트 코
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요 약
스마트 컨트랙트는 블록체인 상에서 실행되는 프로그램으로 복잡한 비즈니스 논리를 처리할 수 있
다. 그러나 블록체인의 무결성과 조건에 따라 실행되는 특성을 이용한 악의적 사용으로 인하여 블록
체인 보안에서 시급한 문제가 되고있다. 따라서 스마트 컨트랙트 취약성 탐지문제는 최근 많은 연구
가 이루어지고 있다. 그러나 기존 연구의 대부분이 단일 유형의 취약성 여부에 대한 탐지에만 초점
이 맞춰져 있어 여러 유형의 취약성에 대한 동시 식별이 어렵다. 이 문제를 해결하고자 본 연구에서
는 스마트 컨트랙트 소스코드 제어 흐름 그래프를 기반으로 그래프의 forward edge와 backward
edge를 고려한 신경망으로 그래프 구조를 학습한 후 그래프 multi-label classification을 진행하여 다
중 취약성을 탐지할 수 있는 모델을 제안한다.

(그림 1 ) 스마트 컨트랙트 예시



드를 Opcode 시퀀스로 파싱하여 심볼릭 실행을 기

반으로 jump 대상을 해결하여 정확한 CFG 추출을

목적으로 한다. 본 연구에서는 스마트 컨트랙트

EVM 바이트코드 CFG추출을 위해 EtherSolve를 사

용한다.

3. 스마트 컨트랙트 취약성 탐지 모델

제안하는 모델은 (그림 2)와 같이 세 가지 주요

단계로 구성된다. (1) 스마트 컨트랙트 소스코드를

opcode로 파싱한 후 EtherSolve를 사용하여 CFG를

추출한다. (2) CFG의 각 정점은 프로그램 명령어의

시퀀스인 basic block으로 본 연구에서는 이 basic

block을 하나의 문장으로 간주하여 처리한다. 각각

의 opcode 시퀀스들을 문장 임베딩 기법인

Sent2Vec[7]을 적용하여 고정 길이 벡터로 변환한

다. (3) 그래프 구조학습을 위하여 Zhang et al[8]이

제안한 CFGNN모델의 노드 정보 전파 기법을 적용

하여 그래프 전역 정보를 융합한다. CFGNN은 CFG

을 위한 모델로 본 연구에서는 CFGNN의 전체 방

법론 중 일부분인 EXIT 정점으로 향하는 forward

edge와 반대 방향인 backward edge를 이용하여 정

점의 feature를 전파하는 기법만을 모델에 적용하였

다. 세 가지의 단계를 거쳐 그래프의 전역 정보를

집계하여 multi-label classification을 수행한다.

4. 실험

성능 평가 실험을 위하여 Etherscan.io[9]에서 검

증된 소스 코드를 가진 이더리움 스마트 컨트랙트를

수집하여 데이터셋을 구축하였다. 컴파일되어 이더

리움 네트워크에 배포된 오픈 소스 스마트 컨트랙트

중 무작위로 2000개를 수집하였다. 6개의 취약성에

대한 multi-label classification 성능 실험을 진행하

였으며, 레이블은 Oyente[10]를 사용하여 6개의 레

이블을 [0 0 0 1 0 1]과 같은 형식으로 구성하였다.

본 연구에서는 Oyente에서 생성된 레이블이 신뢰할

수 있다고 가정한다. 실험 성능 평가 지표로

Accuracy와 Macro-F1, Micro-F1을 선택하였다.

<표 1>에서 제안한 모델의 분류 성능을 확인할 수

있다.

5. 결론

본 논문에서는 스마트 컨트랙트 소스 코드에서

제어 흐름 그래프를 기반으로 여러 유형의 취약성에

대하여 식별할 수 있는 다중 탐지 모델을 제안하였

다. 실험을 통하여 다중 취약성 동식 식별에 대한

성능을 확인하였으며, 향후 작업으로 제어 흐름 그

래프의 노드 간 방향 edge의 시퀀스 정보를 좀 더

효과적으로 집계할 수 있는 방향으로 연구하고자 한

다.
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