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요       약 

양자컴퓨터의 발전이 빠르게 진행됨에 따라서 고전컴퓨터에서는 해결하지 못하는 문제에 대하

여 양자 알고리즘을 활용하여 해결하고자 하는 연구가 진행되고 있다. 이중 소인수 분해 및 이산로

그 문제 해결이 가능한 Shor’s Algorithm 및 이에 대한 공개키 암호 해독을 위한 양자 자원량 분석에 

대한 연구가 진행되고 있다. 하지만 양자 컴퓨터의 가용 양자 자원량이 제한적이라는 점과, 시간적

인 측면에서의 최적화는 암호의 보안강도에 영향을 끼치기 때문에 알고리즘 최적화 연구가 필요하

다. 따라서 본 논문에서는 암호를 대상으로 한 Shor’s Algorithm 양자 회로의 최적화 동향을 조사하

고 향후 연구 방향에 대해서 기술한다. 

 

1. 서론 

양자 컴퓨터는 0과 1이 확률적으로 동시에 존재하

는 중첩의 원리와 연결된 두 입자가 멀리 떨어지더라

도 한 입자에 행해지는 작용이 다른 입자에도 영향을 

미치는 양자 얽힘 원리를 활용한 컴퓨터이다. 이러한 

원리를 통해 기존 고전 컴퓨터로는 다항시간 내에 해

결하지 못한 문제를 빠른 속도로 해결할 수 있다. 따

라서 이를 활용하여 암호, 물리학, 기계학습, 우주 물

리 등의 분야에서 많은 계산량을 요구하는 문제를 해

결하기 위해서 여러 양자 알고리즘들이 제시되고 있

다. 그중 1994 년에 Peter Shor 가 제안한 Shor’s 

Algorithm 의 경우 고전컴퓨터로는 해결 불가능한 소

인수분해와 이산로그 문제에 대하여 해결할 수 있도

록 한다[1]. 따라서 기존에 소인수분해 및 이산로그 

문제의 어려움에 안전성을 기반하는 암호의 경우 더 

이상 안전성을 제공하기 어렵다고 이론적으로 제시되

었다. Shor’s Algorithm을 구현하기 위한 양자 자원량에 

비하여 현재의 양자컴퓨터는 가용 양자 자원량이 제

한적이기 때문에 효율적인 양자회로를 설계 및 구현

하는 것이 중요하며, 시간적의 측면에서의 회로 최적

화의 경우 암호의 보안강도에 영향을 끼치게 된다. 

이에 본 논문에서는 소인수분해 및 이산로그 문제 기

반 공개키 암호를 대상으로 하는 Shor’s Algorithm 회

로의 양자컴퓨터에서의 최적화 동향을 조사하고 향후

연구방향에 대하여 기술한다. 

 

2. 배경지식 

2.1소인수 분해 문제 

소인수분해란 1 보다 큰 자연수를 소인수만의 곱으

로 나타내거나 합성수를 소수의 곱으로 나타내는 방

법이다. RSA 의 경우 큰 수에 대한 소인수 분해가 어

렵다는 것에 기반하여 암호의 안정성을 제시하고 있

다. 

이때 큰 수인 𝑁에 대하여 소인수인 𝑄, 𝑅을 찾고자 

한다면 다음과 같은 과정을 따른다. 

1) 𝑁과 서로소이며 1 < 𝑎 < 𝑁에 해당하는 임의의 

양의 정수 𝑎를 선택한다. 

2) 𝑓(𝑥) = 𝑎𝑥  mod 𝑁의 함수를 계산하고, 함수𝑓(𝑥)

의 주기 𝑟을 계산한다. 

3) 만약 주기 𝑟이 홀수라면 1)으로 돌아가고, 짝수

라면 𝑄 = gcd(𝑎𝑟 2⁄ − 1, 𝑁) , 𝑅 = gcd(𝑎𝑟 2⁄ + 1, 𝑁)

을 계산한다. 이때 Q 또는 R 의 값이 1 이거나 

N이면 1)으로 돌아가 다시 진행한다. 

3)의 경우 유클리드 알고리즘을 활용하면 최대공약

수를 효율적으로 찾을 수 있다. 하지만 2)의 과정에서 

주기 𝑟에 대해 함수 𝑓(𝑥)가 반복되는 𝑥  값 두개를 찾

기 위해서는 𝑂(√𝑟) 의 시간이 필요하기 때문에 

𝑎𝑥  mod 𝑁  함수의 주기 𝑟을 다항시간 내에 찾아내는 



 

 

  

것은 어렵다. RSA-2048 의 경우 𝑟이 617 자릿수로 𝑟은 

대략 10617이다. 따라서 약 √𝑟 ≈ 10309  정도의 시간이 

필요하다. 이는 고전 컴퓨터에서는 불가능한 작업이

다[2]. 

 

2.2Shor’s Algorithm 

Peter Shor 가 1994 년에 제안한 양자 알고리즘으로 

양자적 성질을 활용하여 소인수분해 문제 및 이산로

그 문제를 다항시간 안에 해결 가능한 알고리즘이다. 

소인수분해 문제에서 고전 컴퓨터로는 해결하기 어려

운 𝑎𝑥  mod 𝑁  함수의 주기 𝑟을 찾는 문제에 대하여 

𝑄𝐹𝑇(𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐹𝑜𝑢𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 을 적용하여 

다항시간 내에 해결 가능하도록 한다. Shor’s Algorithm

은 그림 1과 같이 표현할 수 있다[1][2]. 

 

<그림 1>Shor’s Algorithm Circuit 

우선 함수 𝑓(𝑥) = 𝑎𝑥  mod 𝑁을 계산하기 위해서 양

자상태 을 만들어야 하므로 

Hadamard Gate 와 Operator U 를 통과한다. 이때 

Operator U 는 𝑓(𝑥) = 𝑎𝑥  mod 𝑁를 계산하기 위한 함수

로 그림 2와 같이 설계해야 한다. 

 

<그림 2>Operator U Circuit 

그 후에 Lower Register를 Measurement를 하게 되면 

을 관측하게 된다. 이때 𝑥0는 0 과 2𝑛−1사

이의 수이다. 이로 인하여 Upper Register 는 

으로 

Collapse 된다. 마지막으로 𝑄𝐹𝑇는 파동함수의 주기성

을 찾는 대에 있어서 유용함으로 Upper Register에 

 

 
<그림 3>QFT(Quantum Fouier Transformation) Circuit 

 

<그림 3>의 QFT 회로를 사용하여 함수 𝑓(𝑥) =

𝑎𝑥  mod 𝑁에 대한 주기 𝑟을 구한다. Shor’s Algorithm 의 

경우 크기가 N인 수를 소인수 분해할 때 𝑂(𝑙𝑜𝑔3𝑁)의 

시간 복잡도를 요구한다. 

 

3. 연구 동향 

3.1. Shor’s Algorithm 구현 최적화 

Shor’s Algorithm 의 경우 공간과 시간적인 측면에서 

최적화가 진행되고 있다. 공간의 경우 구현에 사용되

는 큐비트 수를 줄이는 관점으로 연구가 진행되고 있

으며, 시간의 경우 Depth 를 줄이는 관점으로 연구가 

진행되고 있다. 특히 Depth 의 경우 Operator U 에서 

Modular exponential 연산의 Depth 를 줄이기 위해 많은 

연구들이 진행되고 있다. 

2022년 A.V.Antipov등은  양자 컴퓨팅 시뮬레이션

을 지원하는 오픈소스 라이브러리인 PennyLane 을 활

용하여 효율적인 Adder, Modular Adder, Modular 

Multiplication, Modular exponential을 순차적을 구현하고 

이를 사용하여 Shor’s Algorithm을 구현하여 양자 자원 

량을 분석하였다[3]. 

3.2. RSA 대상 Shor’s Algorithm 양자 자원량 분석 

2016 년 THOMAS HANER 등은 𝑛비트 정수를 인수

분해하기 위한 Shor’s Algorithm을 2𝑛 + 2 큐비트를 사

용하여 구현하였다. Adder 를 설계함에 있어서 재사용

하기 어려운 Dirty Qubit 수를 줄이고, Adder, Toffoli-gate

와 Clifford-gate 만 사용하여 Modular Multiplication 를 

구현하였다. 이를 바탕으로 하여 Shor’s Algorithm 을 

구현하면 Depth 의 경우 𝑂(𝑛3) , 전체 게이트 수의 경

우 𝑂(𝑛3 log 𝑛)으로 구현 가능하다[4]. 

2021년 Craig Gidney등은 기존에 연구된 기술을 결

합하여 양자 컴퓨터에서 정수 인수분해를 계산하는 

비용을 크게 감소시켰다[5][6][7][8]. 또한 일반적으로

는 무시되는 요소인 노이즈, 반복적인 시도의 필요 

및 계산의 시간-공간 배치를 한다. 이를 활용하여 n 

비트의 RSA 의 정수를 인수 분해할 경우에 3𝑛 +

0.002𝑛 log 𝑛의 물리적 큐비트와 0.3𝑛3 + 0.0005𝑛3 log 𝑛

의 Toffoli-gate 를 요구한다[9]. 기존 연구와 비교한 양

자 자원량은 <표 1>과 같다. 

<표 1> 기존 연구와 Craig Gidney의 Shor’s Algorithm 비교 

 

3.3. ECC 대상 Shor’s Algorithm 양자 자원량 분석 

2023 년 HARASHTA TATIMMA LARASATI 등은 

ECDLP 암호를 해결하는 Shor’s Algorithm 에 필수적으

로 사용되는 유한체 역수의 깊이를 줄이는 회로를 제

시하였다. 바이너리 유한체를 대상으로 하는 Fermat’s 

Little Theorem (FLT) 회로의 Depth를 줄였다. 기존 FTL

회로에서 역 제곱 연산을 제거하여 CNOT게이트 

 
Abstract 

Qubits 

Measurement 

Depth 
Toffoli+T/2 Count 

Gidney et 

al. 

2021[9] 

3𝑛
+ 0.002𝑛 log 𝑛 

500𝑛2 + 𝑛2 log 𝑛 0.3𝑛3 + 0.00005𝑛3 log 𝑛 

Haner et 

al. 

2016[4] 

2𝑛 + 2 52𝑛3 + 𝑂(𝑛2) 64𝑛3 log 𝑛 + 𝑂(𝑛3) 

Fowler et 

al. 

2012[10] 

3𝑛 + 𝑂(1) 40𝑛3 + 𝑂(𝑛2) 40𝑛3 + 𝑂(𝑛2) 



 

 

  

수를 줄이고 표준 Toffoli-gate 가 아닌 Gidney 가 제시

한 <그림 4>의 (b)회로인 상대 위상 Toffoli-gate 를 사

용하여 T-gate 의 Depth 를 줄여 효율적인 회로를 구현

하였다[11]. 

<그림 4> (a)Standard decomposition of Toffoli-gate used in Qskit  

(b)Gindy’s relative-phase (GRT) Toffoli-gate decomposition 
 

2023 년 DEDY SEPTONO CATUR PUTRANTO 등은 

회로 깊이를 줄이는 관점에서 바이너리 타원 곡선에 

대한 양자 암호 해독을 제시하며, 주로 큐비트를 줄

이는 것에 중점을 둔 이전 연구와 달리 Depth를 줄인  

회로를 제시하였다. 이를 위해 기존의 Karatsuba 곱셈

기 및 역수 기반 FTL 회로를 개선하였다. 전체 회로에

서 CNOT과 Toffoli-gate 횟수와 Depth를 줄이는 대신 

에 큐비트가 늘어나는 trade-off 가 존재한다[12]. 기존 

연구와 양자 자원량을 비교한 결과는 다음 <표 2>과 

같다. 

<표 2> 최적화 회로 양자 자원량 

 Quantum cryptanalysis of binary elliptic curves 

Depth 7𝑛 + 6𝑛 log2(3) 

Toffoli-

gate 

count 

4𝑛3 + 3𝑛 log 3 + 1 + 25𝑛2 log 𝑛 + 2𝑛2

+ 𝑂(𝑛𝑙𝑜𝑔3+1) 

Qubit 

count 
4𝑛 + 7𝑛 log 𝑛 + 7 

 

4. 결론 

Shor’s Algorithm 을 구현할 수 있는 양자 컴퓨터의 

개발이 가속화되면서 소인수분해 및 이산로그 문제 

기반 공개키 암호의 해독이 현실로 다가오고 있다. 

이에 최근 해당 공개키 암호를 해독하기 위한 Shor’s 

Algorithm 의 양자 자원량을 정밀하게 추정하고자 하

는 연구들이 활발하게 진행되고 있다. 특히 논리적 

큐비트 수에 대한 분석만 이루어졌던 초기의 연구들

과 달리 기존에는 고려하지 않던 노이즈, 물리적 큐

비트, 계산에 필요한 반복적인 시도 등을 고려한 최

적화 구현 및 이에 대한 양자 자원량 분석 연구들이 

활발하게 진행되고 있다. 본 논문에서는 대표적인 소

인수분해 및 이산로그 문제 기반 공개키 암호인 RSA 

및 ECC 암호를 대상으로 하는 Shor’s Algorithm 의 최

적화 연구 동향 및 이에 대한 양자 자원량 분석 결과

를 조사하였다. 

향후 양자 연산기 및 알고리즘을 큐비트와 Depth 

측면에서 최적화하고 이를 Shor’s Algorithm 에 적용한 

후 양자 자원량을 분석하고자 한다. 
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