스마트워치 저성능 하드웨어에서 발생 가능한 보안위협 도출

박민서¹, 정인수², 김득훈³, 곽진⁴

¹아주대학교 사이버보안학과, 정보보호응용및보증연구실 학부생 ²아주대학교 사이버보안학과, 정보보호응용및보증연구실 석박통합과정 ³아주대학교 소프트웨어융합연구소 박사후연구원 ⁴아주대학교 사이버보안학과 교수

winp82@ajou.ac.kr, jis0727@ajou.ac.kr, kimdh1206@ajou.ac.kr, security@ajou.ac.kr

Potential Security Threat Derivation based on Low-Performance Hardware of Smartwatch

Min-Seo Park¹, In-Su Jung², Deuk-Hun Kim³, Jin Kwak⁴
^{1,2}ISAA Lab., Dept. of Cyber Security, Ajou University
³Inst. for Computing and Informatics Research, Ajou University
⁴Dept. of Cyber Security, Ajou University

요 호

최근 스마트워치는 통화, 문자, 간편 결제, 기타 장치 제어 등 스마트폰의 소형화 및 경량화 형태로 연구되어 여러 서비스를 제공하고 있다. 스마트워치는 스마트폰 대비 작은 물리적 크기로 인해 적용가능한 하드웨어의 성능이 상대적으로 낮으며, 이로 인해 낮은 수준의 보안 기능을 제공한다. 이는 스마트워치 대상 보안위협으로 이어질 수 있으며, 이에 대응하기 위한 보안위협 분석 및 도출 연구가 필요한 실정이다. 따라서, 본 논문에서는 스마트워치의 하드웨어 적용 한계점으로 인한 스마트워치와 스마트폰의 성능 차이를 분석하고, 이로 인해 발생 가능한 보안위협을 도출한다.

1. 서론

스마트워치는 통화나 문자 등 기본적인 알림을 제공하는 것에서 확장되어 간편 결제, 헬스케어 등다양한 서비스를 제공한다. 하지만 접근성, 편의성을 제공하기 위한 소형화 및 경량화로 스마트워치의물리적 크기가 제한된다. 이에 따라, 스마트폰 대비낮은 성능의 하드웨어가 탑재되고 보안 기능 또한스마트폰 대비낮은 수준을 제공한다. 이는 스마트워치대상 사용자 데이터 및 권한 탈취와 같은 보안위협으로이어질 수 있으며[1], 이에 대응하기 위해 하드웨어차이 기반 스마트워치 대상 보안위협 도출 연구가필요한 실정이다. 따라서, 본 논문에서는 스마트워치의하드웨어 적용 한계로 인한 스마트폰과 성능 차이를 분석하고, 이로 인해 발생 가능한 보안위협을 도출한다.

본 논문은 2장에서 스마트워치와 스마트폰의 하드웨어 성능을 분석한다. 3장에서는 스마트워치와 스마트폰의 하드웨어 성능 차이로 인해 발생 가능한 보안위협을 도출하고, 4장에서 결론을 맺는다.

2. 스마트워치와 스마트폰의 하드웨어 성능

스마트워치의 하드웨어 한계점 분석을 위해 스마트워치[2,3,4]와 스마트폰[5,6]의 성능을 분석한다. <표 1> 스마트워치 하드웨어 성능

구성요소	'A'사	'S'사	'H'사
CPU	듀얼 코어	듀얼 코어	알 수 없음
RAM	1GB	2GB	32MB
인증 기능	PIN, 패턴	PIN, 패턴	PIN
배터리	303mAh	425mAh	451mAh

<표 2> 스마트폰 하드웨어 성능

구성요소	'A'사	'S'사	'H'사
CPU	6코어	8코어	
RAM	6GB	12GB	
인증 기능	생체 인식,	생체 인식,	스마트폰
	PIN, 패턴	PIN, 패턴	없음
배터리	3,877mAh~	3,900mAh~	
	4,912mAh	5,000mAh	

3. 스마트워치 저성능 하드웨어 상의 보안 성능 분석 및 발생 가능한 보안위협 도출

스마트워치는 경량화 및 소형화로 인해 CPU, RAM, 배터리 등 하드웨어 성능이 스마트폰 대비 낮은 성능을 가진다. 특히 'H'사의 저가형 스마트워치는 CPU 성능을 알 수 없지만 'A'사와 'S'사에 비해 낮은 성능으로예상되고, RAM에서도 낮은 성능의 하드웨어가 탑재된다. 이로 인해, 스마트폰에서 사용되는 암호화

기법 적용 및 활용에 한계가 존재한다. 또한, 스마트폰은 Bluetooth Classic과 BLE(Bluetooth Low Energy)를 사용하는 반면, 스마트워치는 하드웨어 성능의 한계점을 해결하기 위해 BLE만 사용한다. 뿐만 아니라, 스마트폰에서 사용자 인증을 위해 사용하는 지문 인식, 안면 인식 같은 생체인식 센서가 탑재되지 않았다.

3.1 암호화의 부재

스마트워치는 스마트폰 대비 저성능 하드웨어를 지원함에 따라 스마트폰에서 사용하던 높은 강도의 암호화를 적용하는데 한계가 존재한다. 이로 인해, 일부기기는 암호화 통신을 수행하지 않는다[7]. 이를 악용하여 공격자는 스니퍼 도구와 스마트워치의 MAC 주소를 이용하여 스마트워치와 스마트폰 간의 통신 및스마트워치와 클라우드 간의 통신을 스니핑 할 수 있다. 이때, 통신 트래픽이 암호화 되어있지 않아 공격자는 통신 트래픽의 내용을 확인할 수 있다. 이를 통해, 스마트워치에서 전송되는 사용자의 개인정보, 헬스케어 및 결제 정보 등 민감 데이터를 탈취할 수 있다.

3.2 낮은 보안 수준의 경량 통신 기법

스마트워치는 스마트폰 대비 적은 배터리 용량 문제를 해결하기 위해 기존 블루투스보다 전력 소모량이 적은 BLE를 사용한다. 그러나, BLE를 사용하는 스마트워치의 일부 기기에서 한 번 페어링이 이루어졌던 스마트폰과 재연결 시 추가적인 기기 인증을 진행하지 않는 취약점이 존재한다. 공격자는 이를 악용하기 위해 페어링이 완료된 스마트워치와 스마트폰의 연결을 재밍 기법 등을 통한 전파 방해 기술로 강제 종료시킨다. 또한, 공격자는 이전에 스마트워치와 페어링이 스마트폰으로 이루어졌던 가장한다. 이로 스마트워치는 공격자를 재연결 대상으로 인식하고 추가적인 기기 인증 없이 페어링 하게 된다. 이를 통해, 공격자는 스마트워치의 권한을 탈취할 수 있다.

3.3 낮은 보안 수준의 사용자 인증

스마트워치는 생체인식 센서 도입의 한계로 사용자 인증에 PIN, 패턴을 사용한다. 이는 생체인식 대비 낮은 보안 수준을 지원하고, 이를 대상으로 하는 보안위협이 발생할 수 있다. 예를 들어, 공격자는 피싱을 통해 스마트워치에 악성 코드를 설치하여 스마트워치의 모션 센서 권한을 획득하고, 이를 통해 수집한 모션 데이터를 분석하여 PIN 및 패턴을 탈취할 수 있다. 공격자는 물리적으로 스마트워치를 획득하였을 때 탈취한 PIN 및 패턴을 악용하여 사용자의 데이터에 접근할 수 있으며, 스마트카와 같은 IoT 장치를 제어하여 2차 사고를 발생시킬 수 있다. 또한, 스마트워치를 활용하여 온·오프라인 간편 결제 시 탈취한 PIN이나 패턴을 통해 부정 결제에 악용할 수 있다.

4. 결론

본 논문에서는 스마트워치와 스마트폰에 탑재된 하드웨어 성능 차이를 분석하고, 이로 인해 발생가능한 보안위협을 도출하였다. 추후 분석 내용을 기반으로 스마트워치에 발생 가능한 보안위협 대응방안을 도출할 예정이다.

사사문구

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C2011391)

참고문헌

- [1] Araron James Webb, "Cyber Security of Smart Watches: A Review of the Vulnerabilities with Recommendations Presented to Protect the Wearables", International Journal of Network Security & Its Applications, Vol. 14, No. 3, pp.39–56, Jun. 2023.
- [2] Apple, "Apple Watch Series 8 제품사양", 2023. [Online]. Available: https://support.apple.com/kb/SP8 78?viewlocale=ko_KR&locale=ko_KR
- [3] Samsung, "갤럭시 워치6 클래식 43mm(블루투스)", 2023. [Online]. Available: https://www.samsung.com/sec/w atches/galaxywatch6-11-r950/SM-R950NZKAKOO/
- [4] Honor, "HONER Watch 4", 2023. [Online]. Available: https://www.hihonor.com/global/wearables/honor-watch-4/spec/
- [5] Apple, "iPhone 15 Pro", 2023. [Online]. Available: htt ps://www.apple.com/kr/iphone-15-pro/specs/
- [6] Samsung, "갤럭시 S23 Ultra", 2023. [Online]. Availa ble: https://www.samsung.com/sec/smartphones/gala xy-s23-ultra-s918/SM-S918NZGEKOO/
- [7] Jaime Fuster, Sonia Solera-Cotanilla, Jaime Perez, Mario Vega-Barbas, Rafael Palacios, Manuel Alvarez-Campana and Gregorio Lopez, "Analysis of security and privacy issues in wearables for minors.", Wireless Networks, pp. 1-17, Mar. 2023.