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This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in
low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its
limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual
information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We
propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the
keypoints to characterize the action of the human body. Our method assumes that human behaviors are well
correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint
coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a
multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a
significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern

for both normal and abnormal behaviors.

1. Introduction

Detecting abnormal human behavior in video surveillance
has become a prominent area of interest within the research
community. This heightened attention is primarily due to the
increasing demand for intelligent systems capable of
automatically identifying anomalous events in real-time
video streams and surveillance cameras. This demand has
been driven by the growing need for enhanced security in
public spaces such as airports, train stations, supermarkets,
schools, and busy urban streets, where surveillance cameras
are employed to monitor human activities and identify
deviations from normal behavior. Abnormal behavior
detection in video surveillance primarily revolves around
pinpointing unusual actions by analyzing both temporal and
spatial information in visual recordings. In our study, we
propose a robust abnormal human behavior detection
framework centered on the analysis of human poses extracted
from multimodal image sequences. Pose estimation provides
crucial information in the form of keypoints, representing the
precise locations of joints on the human body. These
keypoints are indispensable for discerning various human

activities, as they exhibit strong correlations with specific
actions. Leveraging this pose information, we aim to identify
abnormal behavior patterns effectively. Furthermore, we
demonstrate the effectiveness of incorporating both visible
and thermal imaging for abnormal behavior detection,
particularly in low-light conditions, such as nighttime
surveillance. Thermal cameras have the unique capability to
capture invisible heat radiation emitted or reflected by all
objects, irrespective of lighting conditions. By fusing data
from both thermal and visible cameras, we can significantly
enhance the overall performance of abnormal behavior
recognition in challenging illumination environments.

2. Related Work

Conventional machine learning approaches used hand-
crafted features to extract human appearance and detect
spatial-temporal interest points for detecting abnormal
behaviors. For example, [1, 2] used HOG and HOF for
abnormal event detection. The handcraft-based methods are
computationally expensive and not robust to the noise and
cluttered background. The authors in [3, 4] built a sparse
coding dictionary to record only normal events. The
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Figure 1. A schematic diagram of the proposed approach for both detection and recognition of human abnormal behaviors.

abnormal events will give a large reconstruction error during
the inference. However, the sparse coding process is slow
and time-consuming. Deep learning has been shown to be
effective for learning representative human abnormal
detection and recognition features. One approach for the
detection task is to train a deep learning model to reconstruct
or predict only normal behavior [5, 6]. Some methods [7, 8]
used skeleton features or human joint keypoints to detect
human abnormal events. The keypoint features provide the
local information for each detected human targets since
abnormal behavior detection is highly related to human
skeleton and their motion patterns.

3. Methodology

Fig. 1 demonstrates our approach for detecting abnormal
human behavior. Given the input thermal and visible videos,
the first step is fusing both of them to produce the single
fused video. The fused video is very robust in very low light
conditions since it can provide an enhanced spectral range to
visible eyes by capturing the high contrast between the
environment and objects’ temperatures. We employed the
HRNet [9] to extract human keypoints from each human
target on the scene. The keypoints features comprised of (X,
y) coordinates for 17 keypoints in human joints following
COCO format. Given the 17-keypoint coordinates and its
corresponding labels, we can treat abnormal behavior
detection problem as a supervised classification where 17-
keypoint coordinates are our features to detect the target
labels (0 or 1). The keypoint features and their corresponding
labels are used to train a Multiplayer Perceptron Network
(MLP) to classify a 17-keypoints skeleton as normal or
abnormal one.

3.1 Multimodal Image Fusion

Fig. 2 illustrates the general process of multimodal image
fusion for acquiring the fused video. Since the resolutions of
the visible and thermal videos are different, the first step is to
resize the spatial coordinates so that both videos share the
same resolution. We upscaled the thermal video (640 X 512)
to match the resolution of the visible video (1024 X 768) and
used it as a reference image for the registration step. Image

registration aligns both images, and it contains two sub-steps:
offset remover and finetuning registration. The offset
remover is actually the hardware correction to make two
images close to each other. This step will choose a fixed
transformation matrix based on the gap between the two
cameras and also the distance between the observed objects
and the cameras. This matrix will be used for initially
warping the visible video to obtain the first result of
registered RGB. We applied the ECC image alignment
algorithm [10] for the finetuning process on RGB images.
The algorithm uses the similarity measurement called
Enhanced Correlation Coefficient to estimate the parameters
of the geometric transformation matrix between the visible
and thermal image in order to maximize the ECC score. ECC
algorithm is robust to lighting contrast and distortion, which
is suitable for different input domains such as thermal and
RGB images. The final step is applying the averaging
technique to fuse both thermal and visible images. We also
stabilize the fused video by smoothing the optical flow
between each frame.

3.2 Human Keypoint Extraction

We employed HRNet [9] as our pose detector. HRNet
receives the bounding box location of each human target,
then processes it through its high-to-low architecture. Its
architecture focused on maintaining the high-resolution
representation through multiple stages. Its original
implementation had four stages, starting from the high-
resolution convolution stream, and gradually adding high-to-
low resolution convolution streams at the next stage. HRNet
outputs the coordinates of 17-keypoints having the format of
(X, y) where x-coordinate is related to width of the image and
y-coordinate is related to the height of the image. Since the
bounding box can have different resolutions, (x, y) can have
a wide range of values. This makes the training process
harder, and the output prediction will be highly influenced by
the large values. So, we normalized all the values of into the
range of (0,1). All the 17-keypoint coordinate values will be
converted to a 34-dimension vector. This vector is treated as
one skeleton instance to train the Multiplayer Perceptron
Network along with the corresponding labels of abnormal
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Figure 2. Multimodal image fusion process for acquiring the multimodal fused video.

class as 1 and normal class as 0.
3.3 Multilayer Perceptron Training

We have devised a straightforward Multi-Layer
Perceptron (MLP) network tailored for binary classification.
The architecture of this MLP model comprises four linear
layers, sequentially configured as 34 — 128 — 64 — 16
— 2. To enhance the stability of the training process, batch
normalization layers have been strategically incorporated
between each of these linear layers. Additionally, in the
output layer, we've introduced a dropout layer to mitigate the
risk of overfitting. Our model takes as input a dataset
consisting of 17 keypoints' data. Each keypoint is associated
with two values (x and y) representing its coordinates.
Consequently, a single human skeleton's data is represented
as a 17x2 = 34-dimensional feature vector, serving as a
singular input. These 34-dimensional vectors are directed
into the MLP's input layer, which is comprised of 34 units.
Subsequently, the input layer is connected to the second layer,
which houses 128 units. The second layer, in turn, connects
to the third layer, which contains 64 units. The third layer is
subsequently  linked to the second-to-last layer,
accommodating 16 units. Lastly, the output layer is
configured with 2 units, each corresponding to one of the two
classes: 0 denoting the normal class and 1 representing the
abnormal class.

4. Experiment Results

We contrasted a multimodal image dataset, named
MIHAB, an abbreviation for "Multimodal Imaging for
Human known as MIHAB, which stands for "Multimodal
Imaging for Human Abnormal Behavior." MIHAB
encompasses images captured using both thermal and visible
cameras, offering a diverse range of visual data sources. Our
dataset has been meticulously designed to focus on five
distinct categories of abnormal human behavior, which
include: fighting (Fi), running (Rn), riding a bike or scooter
(Bi), carrying a suspicious object (Oc), and leaving a

suspicious object (Ou), as illustrated in Fig. 3.

We initially extracted the 17 key points data to train the
MLP for binary classification. The training set has a total of
2320 skeleton instances, while the evaluation dataset has 580
skeleton instance. After 100 epochs of training, we can
achieve the accuracy of 99% on the training set and 97% on
the validation set. Fig. 4 shows the learning curves for the
MLP training on training set and validation set. Looking at
the loss diagram, the train loss is reducing steadily. It means
that our MLP is able to learn how to classify the data. The
train loss starts with a value of over 0.4 at the first epoch then
it’s reducing continuously to just 0.02 at epoch 100. The
validation loss fluctuates during the training but overall its
value decreases to 0.08 at epoch 100. At the end, we can see
that there is just a small amount of overfitting since the gap
between the train loss curve and validation is small.
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Figure 4. Learning curve of MLP model training on keypoint dataset. (a)
Loss values, (b) Accuracy values.

Fig. 5 shows the testing results in the normal, running and
fighting videos. The red bounding box indicates the abnormal
behaviors along with the tracker ID and type of abnormal
events. The green bounding box indicates normal behavior,
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Figure 3. Samples images in the MIHAB dataset. Top row: visible samples, Bottom row: thermal samples. (a) Fighting (Fi), (b) Running (Rn), (c)
Biker (BK), (d) Suspicious Object Carrier (Oc), (e) Bag Left Unattended (Ou), (f) Normal walking pedestrian (No)

while the white bounding box is unidentified behavior due to
low resolution and occlusion.

Figure 5. Experiment results on testing videos.

Table 1 shows the evaluation metrics of our approach for
human abnormal behavior detection in MIHAD dataset. The
test set includes 8 videos from different scenarios such as
fighting, running, bag left unattended. Our results showcase
an impressive accuracy of 0.82 and a robust F1-Score of 0.83,
underscoring the high effectiveness and reliability of our
methodology.

Table 1. The evaluation metrics for human abnormal behavior detection
in MIHAB Dataset

Multimodal image fusion
with human pose keypoints approach

Accuracy 0.82
Precision 0.89
Recall 0.78
F1-Score 0.83

5. Conclusion

This paper presents an innovative approach for detecting
human abnormal behaviors in low-light environments. We
achieve this by harnessing the power of multimodal image
fusion and human pose keypoints. Our methodology involves
the precise localization of each human subject, followed by
the application of HRNet to estimate their pose keypoints.
Subsequently, we employ an MLP trained in a supervised
manner to discern between abnormal and normal instances.
Notably, our MLP model exhibits an impressive accuracy
rate of 98% during the evaluation phase. Furthermore, we

demonstrate the advantages of incorporating pose estimation
in our approach, as evidenced by our results on test videos.
In our forthcoming research endeavors, we intend to explore
the integration of both appearance features and pose features.
This combined approach aims to further enhance the
accuracy of abnormal behavior detection on the MIHAB
database, thereby advancing the state of the art in this
domain.
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