
1. 서론

반도체 공정은 웨이퍼 제조부터 패키징까지 많은

공정단계로 구성되어 있다. 그중에 식각(etch), 증착

공정에서 플라즈마가 이용된다. 물질에 에너지를 가

하면 고체에서 액체로 다시 기체로 상태가 변하게

되는데 기체 상태에 도달한 물질에 다시 높은 에너

지를 가하게 되면 플라즈마 상태가 된다[1]. 물질을

플라즈마 상태로 유도하기 위해서 섭씨 100,000도씨

이상의 열을 가해야하기 때문에 일반적으로 밀폐된

반응로 안에서 전압(Pressure)과 전력(Power)을 동

시에 가하여 플라즈마 상태를 유도한다. 단순히 고

온의 열을 가하여 유도한 플라즈마 열플라즈마라고

하고 진공상태에서 전압과 전류를 걸어주어 유도한

플라즈마를 저온플라즈마라고 하는데 건식 반도체

공정에서는 저온플라즈마를 이용하여 이온입자를 생

성하고 이온입자의 위치에너지를 이용하여 반도체를

생성한다[2].

화학적 반응을 통해 반도체를 만드는 습식공정에 비

해 저온플라즈마를 이용하는 건식공정은 효율성, 생

산성, 정밀성 면에서 우수한 성능을 보이면서도 환

경오염으로부터 자유롭다. 생산하고자 하는 반도체

의 정밀도를 요구하기 때문에 저온플라즈마의 상태

가 매우 안정적으로 유지되어야 한다. 만약 공정 중

플라즈마의 상태가 변하여 생성되는 이온입자의 구

성이 바뀌거나 불순물이 생성된다면 불량웨이퍼를

생성하게 된다[3]. 즉 반도체 공정에서 플라즈마의

상태 유지가 불량률을 낮추는 가장 중요한 기술이

다. 그러나 저온플라즈마를 생성하기 위해서는 반응

로를 진공상태로 유지해야하기 때문에 일정 주기로

공정을 멈추고 생산된 웨이퍼를 검사하게 되는데 불

량품이 발생하면 직전 검사 이후에 생산된 모든 웨

이퍼를 폐기해야 해서 반도체 생산비용에 중요한 요

소가 된다. 그러므로 반응로 안의 플라즈마의 상태

를 실시간으로 모니터링하여 불량 웨이퍼가 발생에

대응하는 것이 효율적이다. 그러나 플라즈마를 알기

위해 반응로 내에 장비를 설치하는 것은 오히려 플

라즈마의 상태에 심각한 영향을 줄 수 있기 때문에

쉽지 않다. OES(Optical Emission Spectroscopy)
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요 약
건식 반도체 공정에서 저온플라즈마를 일정한 상태로 유지하는 것은 반도체 공정의 효율을 높이기
위해서 매우 중요한 문제이다. 그러나 저온플라즈마 반응로를 진공상태로 유지해야하기 때문에 플라
즈마의 상태를 예측하는 작업은 매우 어렵다. 본 연구에서는 OES 센서에서 수집된 데이터를 이용하
여 플라즈마의 상태를 예측하는 모형을 개발하였다. 질소가스를 이용한 플라즈마 반응로에서 15개의
서로 다른 플라즈마를 생성하여 OES 데이터를 수집하였고 15개 플라즈마의 상태를 분류할 수 있는
Gaussian Mixture Model(GMM)을 개발하였다. 총 7,296개 파장에서 측정된 분광강도(intensity)를 주
성분분석(Pricipal Component Analysis)를 통해 2개의 주성분으로 차원 축소하여 GMM 모형을 개발
하엿다. 모형의 정확도는 약 81.72%으로 플라즈마의 OES데이터에 대한 해석력은 뛰어났다.



센서는 플라즈마 반응으로 인해 발생한 이온가스의

스텍트럼을 실시간으로 수집한다. 이때 센서는 S/W

적으로 특정 파장(wavelength)에 대한 강도

(Intensity)를 0.1초마다 측정한다. 다른 센서들과 달

리 OES 센서는 광학케이블을 이용하여 플라즈마의

반응이 진행되는 반응로 외부에 설치되기 때문에 플

라즈마 반응에 대한 간섭의 위험이 없다.[4]

그러므로 본 연구에서는 플라즈마에서 방출하는 빛

을 분광측정기(OES)로 측정한 데이터를 활용하여

플라즈마의 상태를 실시간으로 예측하는 모형을 개

발하였다.

2. 플라즈마 반응 실험

본 실험에서는 OES 센서를 두 곳(top OES, side

OES)에 설치하여 실험 중 데이터를 동시에 수집하

였다.

a) 평면도 b) 단면도

(그림 1) 플라즈마 반응로와 OES 센서의 위치

플라즈마 반응실험은 15개의 시나리오에 의해 수행

되었다. 모든 시나리오에서 반응로에 공급되는 가스

는 모두 같은 질소가스이다.

<표 1> 플라즈마 반응공정 실험시나리오

플라즈마 ID 가스압력(mTorr) C3 position
1 5 10
2 5 30
3 5 50
4 5 70
5 5 90
6 10 10
7 10 30
8 10 50
9 10 70
10 10 90
11 20 10
12 20 30
13 20 50
14 20 70
15 20 90

각 시나리오에서 반응로에 가해지는 전력은 1500W

로 일정하게 유지하는 대신 전력 입력 장치인 두 개

의 VI Probe의 전력량 주입 비율을 변화시켰다. 또

한 플라즈마를 통과하는 가스의 압력을 5mTorr ~

20 mTorr로 변화를 주었다, 다음 표 1은 실험 시나

리오의 설정값들이다, Top OES는 181.15 ~ 1018.20

사이의 3648개 파장에서 강도(intensity)를 측정하였

고 Side OES는 162.01 ~ 1010.92 사이의 3648개 파

장에서 강도(intensity)를 측정하였다.

a) 플라즈마 1번의 Top OES 데이터

b) 플라즈마 1번의 Side OES 데이터

c) 플라즈마 14번의 Top OES 데이터

(그림 2) OES 데이터의 평균패턴

각 OES 데이터를 파장대별 평균치로 구하여 각 시

나리오별 OES 데이터의 평균패턴이라고 정의하고

비교해 보았다.

  


  



 

여기서, 는 평균패턴의 파장(w)에서의 intensity

값, n은 OES 데이터의 개수,  는 I번째 OES 데

이터의 파장(w)에서의 intensity값이다,

위 그림에서 a)와 b)는 같은 플라즈마에서 다른 위치(Top

& Side) OES 데이터의 평균패턴이고 c)는 다른 플라즈마

의 Top OES 데이터이다. OES 데이터의 위치에 따라 다



른 차이가 있고, 플라즈마에 따라서도 다른 패턴이 관찰된

다.

다음 그림 3은 각 시나리오의 대표패턴 간 유사도를

Euclidean Distance로 측정하였다.
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여기서,   는 플라즈마 i의 평균패턴과 플라즈마

j의 평균패턴 간의 Euclidean Distance, 와 

각각 플라즈마 i와 j의 평균패턴의 파장(w)에서의

intensity값, L은 OES 센서가 측정한 파장의 개수이

다. 본 실험에서는 Top OES와 Side OES에 대해

각각 측정하였으므로 L은 3648이다.

그림 3에서 각 플라즈마의 평균패턴에 간의 유사도

를 측정하여 heatmap으로 표출하였다. x와 y축은

플라즈마 ID이고 색이 어두울수록 비슷하고 밝을수

록 차이가 크다. 플라즈마 1, 6, 11번은 다른 플라즈

마의 평균패턴과 매우 다른 패턴을 보인다. 세 플라

즈마는 모두 C3 position이 10인 그룹이다. 반면 C3

position이 30 이상인 경우 가스 압력이 다른 플라즈

마의 차이가 크고 C3 position이 다른 플라즈마의

패턴 차이가 크지 않음을 알 수 있다.

(그림 3) 플라즈마 평균패턴 간 유사도의 heatmap

그림 4는 플라즈마 1의 평균패턴에서 OES 데이터까지의

Euclidean Distance를 측정하였다. x축은 Top OES 데이

터의 거리이고 y축은 Side OES 데이터의 거리이다. 갈색

점은 플라즈마 1의 OES 데이터이고 녹색 점들은 다른 플

라즈마의 OES 데이터들이다. 원점에 가까울수록 유사도

가 높고 멀수록 유사도가 낮다. 갈색 점들이 유사도가 높

고 녹색점들이 유사도가 낮았으나 일부 녹색점들과 갈색

점들이 겹쳐있어서 Euclidean Distance로 플라즈마의 유사

도를 분별하는 것은 어려울 것으로 판단된다.

(그림 4) 플라즈마 1에 대한 OES 데이터들의

유사도(Euclidean Distance) 공간

3. 주성분 분석을 통한 차원축소

주성분분석(Principal Component Analysis,

PCA)는 차원축소기법의 한 종류로서 데이터의 주요

특성을 몇 개의 성분으로 추출하는 방법이다. PCA

는 데이터의 분산을 최대화하는 축을 찾아서 데이터

를 새로운 공간(차원이 더 낮은 공간)에 투영하여

주성분을 정의한다. 이 때 분산을 최대화란 전체 데

이터의 분산 최대량을 설명하는 일련의 연속 직교

구성요소를 찾는 것으로 연속직교 구성요소는 새로

운 공간의 축이 된다. 이 새로운 공간의 축에 해당

하는 구성요소를 주성분(Principal Component)라고

하고 주성분의 변량은 원래 데이터의 변량에 대한

최대 설명력을 가지는 순서대로 번호를 매긴다. 즉

제1 주원소의 변량이 원 데이터의 변량에 대한 상관

도가 가장 높다. 각 주성분은 원래 데이터의 각 성

분의 선형결합으로 정의되고 학습데이터에 의해 각

성분의 선형결합식의 계수가 결정된다.

주성분의 개수를 결정하기 위해 일단 50개의 주성분

을 찾아서 각 주성분의 설명력을 측정하였다. PCA

결과 주성분 1과 2가 다른 주성분의 설명력에 비해

월등히 높아서 전체 변량의 85%정도를 설명하였다.

그러므로 2개의 주성분만으로 원 데이터의 차원축소

를 다시 하였다. 그림 5은 2개의 주성분 공간에서

각 플라즈마 데이터의 위치를 보여준다. 표 2는 2개

의 주성분을 찾는 PCA 결과이다.

4. GMM모형 개발

Gaussian Mixture Model (GMM)은 Gaussian

Distribution이 여러 개 혼합된 Clustering

Algorithm 중 하나이다. Mixture Model은 여러 개

의 기본분포를 선형결합하여 복잡한 분포를 정의하



는 확률모형이다. GMM은 복잡한 형태의 확률분포

를 K개의 정규분포(기본분포)의 선형결합으로 정의

하여 어떤 데이터가 각 사건(cluster)일 확률을 계산

하는 모형이다.

(그림 5) PCA 결과 주성분1-2간 scatter graph

실제 수집된 데이터들은 매우 복합적인 요소에 의

해 발생한 사건의 결과이므로 정규분포와 같은 통계

적 기법으로 해석하기 곤란한 경우가 많다. GMM은

이러한 복합적인 현상에 정규분포를 정의하여 통계

적 분석을 수행할 수 있게 하는 혼합모형이다. 그러

므로 개별 데이터들이 어떤 정규분포에 반드시 속한

다고 가정하고 각 정규분포에 속할 확률을 추정한

다. 이렇게 접근하면 실제로 수집된 데이터를 기반

으로 통계적 모수를 추정할 수 있게 된다. 모수를

찾으면 통계적 이론을 근거로 모수의 밀도를

parametric하게 추정할 수 있다.

본 연구에서는 GMM을 python 3.8의 scikit-learn

package에서 제공하는 GMM모듈을 이용하여 개발

하였다. 실험을 통해 수집된 OES 데이터는 PCA를

통해 차원축소하고 그중 90%를 무작위로 추출하여

학습데이터로 사용하고 나머지는 테스트용 데이터

로 이용하였다. 원래 clustering 모형인 GMM을

classification에 활용하기 위해 15개 정규분포의 중

심값(평균값)을 학습데이터의 평균값으로 초기화하

여 클러스터의 중심값을 탐색하였다.

학습시킨 GMM에 학습결과는 다음 그림과 같다. 학

습데이터 구성할 때 전체 OES 데이터의 10%를 테

스트용 데이터를 무작위로 추출하였다. 테스트 데이

터로 GMM모형을 테스트한 결과 정확도는 81.72%

였다.

5. 결론

본 연구에서는 건식 반도체 공정인 저온플라즈마

반응로에서 15 종류의 플라즈마를 생성하고 OES 데

이터를 수집하였다. 수집된 OES 데이터를 기반으로

15개 플라즈마를 구분할 수 있는 플라즈마 상태 예

측 모형을 GMM으로 구현하였다. GMM은 높은 차

원의 다변량 분석에는 적절치 않기 때문에 PCA를

통해 2개의 주원소를 찾아서 학습데이터를 구성하였

다. 학습데이터를 이용하여 GMM을 학습시키고 테

스트 데이터를 통해 정확도를 측정한 결과 80% 이

상의 정확도를 보였다.

향후 parametric한 통계모형을 이용한 예측모형을

만들었으나 향후 Deep Nueral Network 등 Non –

parametric한 모형이나 비선형 모형 등 다양한 분류

모형을 개발하여 비교하고자 한다.
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