
1. 서론

기상 예측은 운송업, 제조업 및 환경 등의 분야

에서 중요한 역할을 하고 있다[1, 2]. 기상 예측을

위해 지상 관측소에서는 바람, 온도, 습도, 기압 등

의 대기 상태를 관측하고 있다. 지상 관측소에서 수

집되는 정보는 특정 지역의 정밀한 대기 상태를 추

정하는 데 유용하지만, 그 관측 범위가 제한적이다.

한편 remote-sensing 기술이 발전함에 따라 더 넓

은 범위에 걸쳐 관측할 수 있는 레이더의 반사도나

위성의 복사량 관측이 수집되고 있다. 다양한 센서

는 전 지구 환경을 설명하기 위해 여러 규모의

multi-modal 관측 데이터를 지속적으로 제공하므로

대규모 관측 데이터는 하루에 페타바이트 이상의 전

송속도로 수집되고 있다[3].

기존의 수치예보 모델 시스템은 운동량, 질량, 엔

탈피 등의 물리 및 역학적 관점에서 대기를 설명하

도록, 결합 편미분 방정식으로 구성된 대규모 수치

시뮬레이션이다[4]. 이러한 방법은 대기 상태를 높은

정확도로 예측하여 산업 분야 전반에 걸쳐 효율적으

로 활용되고 있지만, 물리적 모델의 복잡성과 많은

도메인 지식의 필요성으로 인해, 급증하는 관측의

영향을 실시간으로 평가하기에는 어려움이 있다.

최근, 그래프 기반의 신경망 모델을 활용하여 대

기의 시공간적 특징을 학습하는 연구가 수행되고 있

다[5]. 일반적으로 기상 네트워크는 여러 지역에 분

포하는 기상 관측소를 node로, 관측소 간의 인접 정

보를 edge로 표현해 관측의 위상정보를 구조한다.

여기에 graph convolutional networks와 같이 비정

형 데이터를 학습하는 기법을 적용하여 태양 복사량

[6], 지진파[7], 해수면 온도[8] 등 다양한 기상 변수

를 예측하는 연구가 다양하게 수행되고 있다. 특히,

Lam et al..[9] 은 글로벌 예측 시스템을 모델링하기

위해, 수치예보 모델의 3차원 격자 구조를 네트워크

로 표현하여 대기의 공간 상호작용을 추출한다. 하

지만, 실시간 관측정보가 반영되지 않아 예측 정확

도 측면에서의 한계점이 있었다.
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를 추정하기 위해 그래프 신경망 기반의 예측 모델

을 제안하고자 한다. 특히, 관측 종별로 서로 다른

특성을 반영하기 위해 pretext task 기반의 그래프

자기 지도학습(Self-Supervised Learning, SSL) 프

레임워크를 활용한다.

2. 기상 네트워크를 위한 자기 지도학습 방법

선행 연구[10]에서는 수치예보 모델의 공간정보

를 표현하기 위해 3차원 그리드 형태의

convolutional neural networks(CNN) 기반의 모델을

활용하였다. 넓은 범위에서 다양한 기상현상의 패턴

을 학습하는 모델은 단일 지역의 기상현상만을 학습

하는 모델보다 예측 성능에 있어 6배 이상의 개선이

있다는 점을 실험적으로 검증하였다. n차원 텐서 형

태의 입력자료가 요구되는 CNN 모델을 비균질한

관측 자료에 적용하기 위해서는 interpolation해야하

나, 관측의 실제 위상정보와 특성이 크게 손실된다.

따라서, 본 연구에서는 비정형 데이터 구조를 그

래프 형태로 표현하여 관측 주변의 기상현상을 표현

한다. 그래프 구조로 관측과 수치예보 모델의 공간

정보를 표현하면, 관측정보의 손실을 최소화할 수

있으며, 서로 다른 데이터 구조를 가지는 자료를 융

합하기에도 효율적이다. 기상현상의 공간적 특성을

표현할 수 있는 그래프를 기상 네트워크

(meteorological network)로 정의하고,

    로 수식화할 수 있다. 는 개별

관측 또는 수치 모델의 격자점을 나타내며, 는 관

측 혹은 격자점의 인접 관계로 정의한다. 여기서 격

자점과 관측점을 서로 다른 node type으로 표현하

며, 관측점은 더 세분화하여 관측 종별로 node type

을 구별한다. 따라서, 는 heterogeneous graph로

정의할 수 있으며, 관측 종에 따라 구분되는 특성을

학습하기에 효율적이다.

관측변수의 개수와 물리량은 관측 종마다 서로

다르므로, 각 노드는 서로 다른 크기의 node feature

를 가진다. 본 연구에서는 예측 모델이 pretext task

를 해결함으로써, 고정된 크기의 node feature

vector로 관측의 역할을 표현한다. 각 관측의 특징적

인 역할을 이해할 수 있도록 설계된 pretext task를

통해 self-supervised learning(SSL)은 원본 데이터

보다 정보를 풍부하게 학습하여 downstream task에

서 더 개선된 일반화 성능 및 강건함을 달성할 수

있게 된다. 따라서, 본연구에서는 관측의 종류에 따

른 node classification을 pretext task로 수행하여 관

측 종별 특성을 pre-training 할 수 있다. 그래프 인

코더를  , pretext 디코더를 라 하면, 자기 지도

학습 방법은,

 


argmin

로 수식화할 수 있다. 여기서 는 그래프 의

degree를 나타내는 행렬이며, 은 본 연구에서 설

계된 pretext task에 따라 pretext 디코더의 출력을

결정하는 SSL 손실함수이다.

훈련된 그래프 인코더 를 활용하여 생성한

node feature vector는 실제에 가까운 대기 상태를

추정하는 데에 사용된다. 대기 상태를 추정하는 이

작업을 downstream task로 정의하고, downstream

디코더를 라 하면, 다음과 같이 그래프 지도학습

task를 구성할 수 있다;

 



argmin
  .

여기서 는 추정 하고자 하는 대기 상태 값을 나타

내며, 은 모델을 downstream task에 대해 학

습시키는 지도학습 손실함수이다.

3. 사전실험 결과

본 연구에서는 실제 기상청 현업에서 사용되는

multi-modal 기상관측 데이터와 수치예보 모델 데

이터를 확보하였다. 수치예보 시스템에서 자료동화

모델의 결과인 분석장을 실제 대기 상태로 가정하였

으며, 사용되는 관측값은 기상청의 관측 전처리 시

스템인 KPOP으로 정제된 데이터를 활용하였다. 관

측 종은 위성 및 지상관측인 AIRCRAFT, GPSRO,

SONDE, AMV, AMSU-A, AMSR2, ATMS, CRIS,

GK2A, IASI, MHS로 총 11종이 사용되었다. 학습에

사용된 기간은 2021. 5. 1. 06UTC-2021. 5. 7.

00UTC 이며, 검증에 사용된 기간은 2021. 5. 7.

06UTC-2021. 5. 10. 18UTC이다.

실험 결과는 아래 표1과 같으며, 동아시아 지역

의 중층 고도의 바람, 온도, 습도의 상태를 추정한

결과이다. 본 연구에서 제안하는 graph attention

network(GAT) (w/ssl)은 mean square error(MSE)

와 mean absolute error(MAE)가 다른 비교 모델(

fully-connected neural network(FCN)와 graph

neural network(GNN), GAT)보다 작으므로, 최우수

성능을 달성한 모델임을 확인할 수 있다. 비가장 높

은 정확도를 달성한 비교모델인 GAT와 비교하면

MAE기준으로 10배의 성능 개선을 확인할 수 있다.

관측의 역할을 SSL 방식으로 학습한 관측의 feature



vector는 인접 지역의 정보를 단순히 aggregation

한 feature vector보다 예측에 효과적인 것으로 보인

다. 인접 관측과 대기 상태를 바탕으로 관측의 역할

을 선행 학습하는 모델은 대기 상태를 추정하는 데

있어 정확도를 개선하는 데에 효과적이다. 추가적으

로, FCN 모델은 공간적 상관관계를 학습할 수 없어

정확도가 낮은 반면, GNN과 GAT 모델의 경우 관

측과 인접한 지역의 대기 상태를 고려하므로 비교적

높은 성능을 유지하는 것으로 보인다. 관측을 포함

한 격자점 주변의 대기 상태는 현재 대기 상태를 추

정하는데 중요한 정보를 제공하는 것으로 생각된다.

Models MSE MAE

FCN 0.159 0.245

GNN 0.020 0.196

GAT 0.016 0.175

GAT (w/ssl) 0.004 0.075

<표 1> 각 모델의 정확도 비교

4. 결론

본 연구에서 제안하는 multi-modal 기상관측을

융합하는 그래프 자기 지도학습 방법은 실제에 가까

운 대기 상태를 추정할 수 있는 새로운 접근법이다.

제안하는 모델은 기존의 전통적인 방법의 비용 및

시간 효율성을 개선함으로써, 이상 관측 탐지, 관측

의 편차 보정, 관측 영향 추정 등 다양한 관측 전처

리 기술에 활용할 수 있을 것이다. 특히, 관측이 예

보에 미치는 영향을 평가하는 것은 관측 전처리 성

능을 개선하는 데에 필수적이다. 본 연구에서 제안

하는 SSL 학습 방법을 기상 네트워크에 적용하고,

네트워크에서 어떤 관측이 대기 상태를 추정하는데

높은 가중치로 참여했는지 설명가능한 인공지능 기

법을 접목할 수 있으며, 이러한 방법을 통해 관측의

영향을 추정하는 방향으로 연구를 확장할 수 있을

것이다. 향후 연구에서는 제안하는 모델의 우수성을

다방면으로 검증하기 위한 실험을 설계하고자 한다.
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