
1. 서론

차분 분석이란 암호 분석기법 중 하나로 입력 차분

에 따른 출력 차분을 분석하여 키를 유추할 수 있다

면, 암호 알고리즘이 안전하지 않게 설계되었음을 의

미한다. 이때, 차분 공격을 위해 무작위 데이터들로부

터 차분 특성 (입력 및 출력 차분)을 만족하는 데이터

를 구별해낼 수 있다면, 차분 분석에 필요한 공격 복

잡도가 줄어든다. 이와 같이 데이터를 구별해내는 공

격 기법을 구별자 공격이라 한다.

최근 딥러닝 기술이 발달하면서 구별자 공격에도 딥

러닝 기술들이 활발히 적용되고 있다. 하지만 아직까

지 NIST 표준 형태 보존 암호인 FF1, FF3-1에 대한

딥러닝 기반의 구별자에 관한 연구는 수행되지 않았

다. 본 논문에서는 NIST 표준 형태 보존 암호 (FF1,

FF3-1)에 대한 딥러닝 기반의 신경망 구별자를 최초

로 제안하였다.

2. 관련 연구

2.1 NIST 표준 형태 보존 암호[1]

개인정보보호법 시행 등으로 인해 데이터베이스

(Database, DB) 암호화의 중요성이 커졌으며, 특히

주민등록번호, 신용카드번호 등의 암호화가 주요 이

슈로 대두된다. DB 암호화에 기존 암호기술을 적용할

경우 데이터의 타입이 변하거나 길이가 증가하여 DB

스키마 변경이 필요하지만 형태보존암호를 사용 할

경우 데이터의 타입과 길이를 보존하는 암호화 방식

이므로 DB 스키마의 변경 없이 암호화를 적용할 수

있다. 이처럼 형태 보존 암호는 일반 블록암호와 달

리 암호문의 평문의 형태가 그대로 유지되도록 보장

하는 암호화 방식이다. 예를 들어, 신용카드의 16자

리 10진수 번호 중에서 일부 6자리를 암호화해야 한

다고 할 때, 만약 128비트 블록 사이즈의 블록 암호

AES를 이용해서 암호화한다면 암호문의 길이도 128

비트가 될 것이다. 평문인 6자리 10진수는  ~
이므로 약 20비트 밖에 안 되는데, 암호문은 이
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요 약
차분 분석은 암호 분석기법 중 하나이며, 차분 공격을 위해 랜덤 데이터들로부터 차분 특성 (입/출력

차분)을 만족하는 데이터를 구별해 내는 것을 구별자 공격이라 한다. Neural distinguisher는 구별자에

딥러닝을 적용한 것이다. 본 논문에서는 NIST 표준 형태보존암호인 FF1, FF3-1을 위한 단일 차분을

사용한 최초의 신경 구별자를 제안하였다. FF1은 차분으로 를 사용할 때, 숫자 및 소문자 도메인

에서 차분 데이터 구별에 성공하였다 (정확도는 각각 0.85 및 0.52). FF3-1에서는 을 사용할 때,

숫자 및 소문자 도메인에서 차분 데이터 구별에 성공하였다 (정확도는 각각 0.98 및 0.55).



보다 6배 이상 큰 128비트 길이를 갖는다. 따라서

평문 대신 암호문을 저장하기 위한 추가적인 저장

용량은 필요하지 않게 되기 때문에 형태 보존 암호

는 기존의 데이터베이스 시스템에서 이용하고 싶을

때 시간과 비용 면에서 효율적이다. 형태 보존 암호

중 NIST 표준으로 지정된 암호는 FF1, FF3가 있

다. FF1와 FF3는 각각 10 라운드와 8라운드로 구성

되며 블록 크기와 키 크기는 각각 32비트와 128비트

이다. 또한 Feistel 구조로 설계되었으며, 내부 라운

드 함수로 암호화 함수 (예: AES)를 사용하며, 해당

암호화 알고리즘은 변경 될 수 있다. 위의 두 암호

는 유사한 점도 있지만, FF1은 FF3보다 더 높은 라

운드를 가짐으로써 상대적으로 더 안전하며 ,FF3는

FF1에 비하여 데이터 처리량이 더 높다는 이점이

있다.

2.2 딥러닝 기반의 신경망 구별자

딥러닝 기술은 데이터에 대한 확률적 예측을 수행

하기 적합하다. 딥러닝 기반의 신경망 구별자는 이러

한 특성을 활용하여 기존의 구별자 공격에 적용한 것

이며, 여러 연구들이 진행되고 있다[2,3].

3. NIST 표준 형태보존암호 FF1, FF3에 대한 신경

망 구별자

3.1 데이터 셋

(그림 1)은 신경망 구별자의 데이터셋을 생성하는
과정이다. 먼저, 임의의 랜덤 평문  , 을 생성 후 (입력 차분)을 만족하는 평문 쌍을 생성하기 위해에 입력차분을 XOR 하여 평문 을 구한다. 그
후, 각 평문  ,  , 을 암호화하여 암호문  , , 을 구한다. 이때 와 은 차분 관계가 아
닌 랜덤 평문을 암호화한 결과이므로, 두 값을 연접
한 결과를 0으로 라벨링한다. 반면 와 는 입력
차분을 만족하는 평문의 암호문으로 특정 확률로 출
력 차분을 만족하는 암호 데이터이다. 따라서, 와를 연접한 값은 1로 라벨링 한다. 암호화 과정에
서 사용되는 평문 및 암호문은 숫자 (0 ~ 9) 또는
소문자 (a ~ z) 도메인에서 선택되고, 실제 데이터
셋에는  ,  , 의 비트 값이 저장된다.

(그림 1) 데이터 셋 생성 과정



3.2 모델 구성

NIST 표준 형태보존 암호 FF1, FF3에 대한 신경

망 구별자의 전체적인 구조는 (그림 2)와 같다. 랜

덤 또는 차분 암호문 쌍의 각 비트는 입력 레이어의

각 뉴런에 할당된다. 이후, 히든 레이어를 거치고

출력 레이어에서 sigmoid 활성화 함수를 거쳐 0 ~

1 사이의 값을 얻어낸 뒤 해당 값과 실제 정답 (0

또는 1)의 손실을 계산한다. 이러한 과정을 통해 입

력 데이터에 대해 올바른 구별이 가능하도록 학습을

진행하면 FF1, FF3에 대한 신경망 구별자로서 동작

할 수 있게 된다.

(그림 2) 신경망 구별자의 구조

<표 1>은 FF1, FF3에 대한 신경망 구별자의 하

이퍼파라미터를 나타낸 것이다. Epoch은 FF1이

FF3 보다 더 많은 라운드를 가지기 때문에 각각 20

과 15로 설정하였다. 레이어는 Dense 레이어를 사용

하였다. 또한, 신경망 구별자는 차분을 갖는 데이터

와 랜덤 데이터를 구별해야하므로 이진 분류를 수행

한다. 따라서 손실함수로는 “binary_crossentropy”

를 사용한다. 최적화 함수는 일반적으로 성능이 우

수한 Adam을 사용하였다. 이때, 최적화 함수의 학

습률 (Learning rate)를 조절하여 더욱 정교한 학

습을 하기 위해 학습률을 0.001에서 시작하여

0.0001까지 감소하도록 하였다.

Format-Preserving

Encryption
FF1 FF3

Epoch 20 15

Hidden layers

5 hidden

layers with

64 units

4 hidden

layers with

128 units
parameters 173,956 74,497
Batch size 32

Activation
ReLu (Hidden). Sigmoid

(Output)
Optimizer

(Learning rate)
Adam(lr = 0.0001~0.001)

Loss function binary_crossentropy

<표 1> Hyperparameters of the proposed neural 
distinguisher for FF1, FF3 

<표 1> SQuaRE와 ISO/IEC 9126, ISO/IEC 14598

사이의 관계

4. 실험 및 성능평가

본 실험은 Ubuntu 20.04.5 LTS와 Tesla T4 (GPU)

12GB RAM를 지원하는 클라우드 컴퓨팅 플랫폼

Google colab에서 수행되었다. 프로그래밍 환경으로는

tensorflow 2.12.0 및 Python 3.9.16를 사용하였다.

4.1 FF1의 실험결과

<표 2>는 FF1 입력 차분에 따른 정확도를 보여준

다. 숫자 도메인에서 최대 10라운드까지 데이터를 구

분할 수 있으며  차분에서 0.85의 가장 높은 정확

도 및 신뢰도 (Reliability=Ts – 0.5 (이진 분류의

랜덤 확률))을 달성하였다. 소문자 도메인에서는 평

문과 암호문의 경우의 수가 증가하므로 최대 2라운

드까지 데이터를 구분할 수 있으며  ,  , , 
에 대해 0.52의 정확도로 숫자 도메인에 비해 낮지

만 구별자로서의 유효한 정확도를 달성하였다. 그러

나 다른 차분을 사용할 경우 에 비해 두 도메인

에서 상대적으로 낮은 정확도 및 신뢰도가 도출된

다. 본 실험을 통해 FF1에서는 가 숫자와 소문자

에서 공통적으로 가장 좋은 차분임을 알 수 있다.

Number (10-round) Lowercase (2-round)
Tr Val Ts Rel Tr Val Ts Rel

01 0.73 0.74 0.73 0.23 0.50 0.50 0.50 0.00
02 0.74 0.75 0.74 0.24 0.51 0.51 0.51 0.01
03 0.71 0.71 0.71 0.21 0.52 0.51 0.52 0.02
04 0.75 0.75 0.75 0.25 0.51 0.51 0.51 0.01
05 0.75 0.75 0.75 0.25 0.51 0.51 0.51 0.01
06 0.75 0.75 0.75 0.25 0.51 0.51 0.51 0.01
07 0.75 0.75 0.75 0.25 0.51 0.51 0.51 0.01
08 0.80 0.80 0.80 0.30 0.51 0.50 0.51 0.01
09 0.84 0.83 0.84 0.34 0.52 0.52 0.52 0.02
0A 0.84 0.84 0.84 0.34 0.50 0.50 0.50 0.00
0B 0.82 0.82 0.82 0.32 0.51 0.51 0.51 0.01
0C 0.85 0.84 0.85 0.35 0.5 0.5 0.5 0.00
0D 0.78 0.78 0.78 0.28 0.51 0.51 0.51 0.01
0E 0.81 0.81 0.81 0.31 0.52 0.52 0.52 0.02
0F 0.85 0.85 0.85 0.35 0.52 0.52 0.52 0.02

<표 2> Result of FF1 according to input difference
(Tr, Val, Ts : Accuracy, Rel : Reliability).

4.2 FF3의 실험결과

<표 3>는 FF3 입력 차분에 따른 정확도를 보여준

다. 숫자 도메인에서 최대 8라운드까지 데이터를 구분

할 수 있으며  차분에서 0.98의 가장 높은 정확도

및 신뢰도를 달성하였다. 소문자 도메인에서는 앞의

FF1과 마찬가지로 평문과 암호문의 경우의 수가 증

가하므로 최대 2라운드까지 데이터를 구분할 수 있

으며  , 에 대해 0.55의 정확도로 숫자 도메인에

비해 낮지만 구별자로서의 유효한 정확도를 달성하



였다. 그러나 다른 차분을 사용할 경우 에 비해

두 도메인에서 상대적으로 낮은 정확도 및 신뢰도가

도출된다. 본 실험을 통해 FF3에서는 이 숫자와

소문자에서 공통적으로 가장 좋은 차분임을 알 수

있다.

Number (8-round) Lowercase (2-round)
Tr Val Ts Rel Tr Val Ts Rel

01 0.62 0.62 0.62 0.12 0.54 0.54 0.54 0.04
02 0.82 0.82 0.82 0.32 0.55 0.54 0.54 0.04
03 0.78 0.76 0.77 0.27 0.52 0.51 0.51 0.01
04 0.76 0.75 0.75 0.25 0.52 0.52 0.51 0.01
05 0.77 0.75 0.74 0.24 0.53 0.53 0.53 0.03
06 0.75 0.74 0.75 0.25 0.52 0.51 0.52 0.02
07 0.75 0.73 0.74 0.24 0.53 0.52 0.52 0.02
08 0.98 0.97 0.97 0.47 0.55 0.55 0.55 0.05
09 0.96 0.94 0.94 0.44 0.54 0.54 0.54 0.04
0A 0.96 0.95 0.95 0.45 0.53 0.53 0.53 0.03
0B 0.97 0.96 0.96 0.46 0.53 0.52 0.52 0.02
0C 0.97 0.95 0.95 0.45 0.53 0.53 0.53 0.03
0D 0.96 0.96 0.96 0.46 0.53 0.52 0.51 0.01
0E 0.96 0.96 0.96 0.46 0.54 0.54 0.55 0.05
0F 0.96 0.93 0.94 0.44 0.52 0.52 0.52 0.02

<표 3> Result of FF3 according to input difference
(Tr, Val, Ts : Accuracy, Rel : Reliability).

4. 결 론

본 논문에서는 NIST 표준 형태보존암호인 FF1,

FF3-1을 위한 단일 차분을 사용한 최초의 신경 구별

자를 제안하였다. FF1은 차분으로 를 사용할 때,

숫자 및 소문자 도메인에서 차분 데이터 구별에 성

공하였다 (정확도는 각각 0.85 및 0.52). FF3-1에서

는 을 사용할 때, 숫자 및 소문자 도메인에서 차

분 데이터 구별에 성공하였다 (정확도는 각각 0.98

및 0.55). 향후에는 형태 보존 암호에 양자 인공지능

을 적용하여 양자 컴퓨터 상에서 동작 가능한 신경

망 구별자를 구현할 예정이다.
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