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요       약 

In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) 

for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in 

medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful 

and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the 

original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques 

with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach 

harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant 

feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the 

potential of our methodology in enhancing automated disease diagnosis in fundus imaging. 

 

1. Introduction 

Fundus imaging stands at the forefront of ophthalmic 

diagnostics, providing a non-invasive technique to visualize 

the retina, optic disk, and the underlying blood vessels. 

Historically, the interpretation of fundus images has relied on 

expert ophthalmologists, but with the sheer volume of medical 

data and the intricacies involved in image interpretation, 

automated systems for disease diagnosis are of paramount 

importance. Properly trained, such systems can expedite 

diagnosis, reduce human errors, and alleviate the strain on 

healthcare professionals. 

The challenge, however, lies in the need for large-scale 

annotated datasets for supervised training, which are both 

expensive and time-consuming to obtain in the medical 

domain. Self-supervised learning has emerged as a promising 

paradigm to address this issue. By designing tasks where the 

data itself provides the supervision, models can be pre-trained 

on large unlabelled datasets, capturing rich, intricate patterns 

before fine-tuning on smaller labeled datasets. 

The Vision Transformer (ViT) [1], which splits images into 

fixed-size patches, linearly embeds them, and then processes 

them in a series of transformer blocks, has recently achieved 

state-of-the-art results in various image classification tasks. 

Unlike the traditional convolution-based architectures, ViT 

provides a global view of the image, potentially capturing 

holistic patterns crucial for medical images. However, its 

efficacy in medical image analysis, particularly in the context 

of Fundus images, remains an area ripe for exploration. 

In this paper, we bridge the gap by introducing a novel pre-

training methodology combining the power of ViT with self-

supervised learning principles tailored for Fundus image 

disease diagnosis. Through our approach, we aim to harness 

the global receptive fields of the Vision Transformer and the 

potential of self-supervised learning to create a robust 

diagnostic tool. 
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The scarcity of labeled medical data has made supervised  

training of deep models challenging. Self-supervised learning 

(SSL), which exploits unlabeled data to learn rich 

representations, offers a solution. In the medical imaging 

domain, [2] employed SSL for cardiac MR image 

segmentation by predicting the rotation angle of images. 

Similarly, [3] proposed a method that involves training a 

model to predict the sequence of shuffled patches from a 

medical image. These approaches underscore the potential of 

SSL in capturing intricate patterns from medical images 

without explicit labeling, setting the stage for effective fine-

tuning with limited labeled datasets. 

 

3. Methodology 

Our pre-training methodology is structured as a synergy 

between the ViT and the Masked Autoencoder (MAE) [4], as 

shown in Figure 1. The process commences with random 

masking of a given Fundus image. The masked image is fed 

into the MAE, which aims to reconstruct the original image. 

This reconstruction serves two-fold purposes: evaluating the 

model's learning via Mean Absolute Error (MAE) and 

providing a foundation for contrastive learning within the 

Vision Transformer. The ViT then collaborates with the MAE 

output to generate representations using contrastive loss. The 

overarching goal is to ensure that these representations capture 

essential features, enabling the Vision Transformer to later 

engage in accurate disease diagnosis. Initially, both encoders 

 

split the images into patches: 

𝑥𝑝 ∈  ℝ𝐻 ×𝑊×𝐶  →  𝑥𝑝 ∈  ℝ𝑁×(𝑃2∙𝐶) 

where 𝐻, 𝑊 is the resolution of the original images, 𝐶 is the 

number of channels, 𝑃 is the resolution of each image patch, 

and 𝑁 =  𝐻𝑊/𝑃2 is the number of patches. 

The Masked Autoencoder (MAE) plays an important role 

in generating a reconstructed image from the randomly 

masked fundus image. The primary objective of the MAE is 

to fill in the masked portions in a way that closely resembles 

the original, unmasked image. This error quantifies the 

model's ability to handle masked inputs and is backpropagated 

to fine-tune the MAE's parameters. Given the original image 

𝐼  and the masked image 𝐼𝑚𝑎𝑠𝑘 , the MAEss output 

𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 , then the reconstruction loss is defined as: 

𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =  
1

𝑁
 ∑ |𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖− 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝑖

|
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where 𝑁 is the total number of pixels in the image. This error 

quantifies the model's ability to handle masked inputs and is 

backpropagated to fine-tune the MAE's parameters. The 

output 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑  is constructed by the latent embeddings 

𝑧𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 , which is the output of the MAE model. We use 

this representation as 1 of the positive pair for contrastive 

learning using ViT. 

The Vision Transformer is entrusted with the responsibility 

of learning robust representations from the reconstructed 

image and its original counterpart. The heart of this process is 

the contrastive loss, ensuring that the embeddings of the 

positive pair (original and reconstructed images) are closer in 

the latent space compared to other negative samples. Let 

𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙   is the original image, then 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙   is the 

representation obtained after training with ViT. The similarity 

matrix is calculated by:  

𝑠𝑖𝑚(𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝑧𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑) =  
𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∙ 𝑧𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

‖𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙‖
2

× ‖𝑧𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑‖2

 

 

The contrastive loss 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 is defined as: 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =  − log
exp (𝑠𝑖𝑚(𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝑧𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑)/𝜏)

∑ exp (𝑠𝑖𝑚(𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝑧𝑘)/𝜏)𝐾
𝑘=1

 

where 𝜏  is the temperature parameter and 𝑧𝑘  are the 

embeddings of negative samples. The above loss pushes the 

embeddings of the positive pair to be closer while pulling 

away from the embeddings of negative samples. The 

calculated loss is then backpropagated to optimize the Vision 

Transformer's weights. 

Figure 1 Proposed system 



 

 

  

 

4. Implementation details 

All Fundus images were resized to a uniform dimension of  

224×224 pixels. During training, images were fed into the 

model in batches of 64, an initial learning rate of 0.001, 

temperature of 0.07 was used and The AdamW optimizer was 

selected for training both the Masked Autoencoder and the 

Vision Transformer. To further mitigate overfitting, especially 

crucial given the high-dimensional nature of medical images, 

a weight decay coefficient of 0.99 was implemented. This L2 

regularization technique penalizes larger weights, pushing the 

model to maintain smaller parameter values and thus a simpler 

model. Data augmentation is also used to diversify the original 

image, this makes the contrastive learning become more 

effective. The pre-training phase, which involves the tandem 

training of the Masked Autoencoder and Vision Transformer 

using the proposed methodology, spans 1000 epochs. This 

extensive pre-training ensures that the models thoroughly 

learn the intricate patterns and representations of the Fundus 

images. Following this, the Vision Transformer undergoes a 

fine-tuning phase for disease diagnosis, lasting 100 epochs. 

This stage refines the model's weights, optimizing it for the 

specific task of disease classification. 

For evaluation, we use kappa score, often referred to as 

Cohen's Kappa coefficient, is a statistical measure used to 

evaluate the agreement between two raters or classifiers, 

accounting for the agreement that might happen by chance. 

The coefficient provides a score between -1 and 1: a score of 

1 indicates perfect agreement between the two raters, a score 

of 0 suggests agreement is no better than chance, and a 

negative value implies agreement is worse than random 

chance. To compute the Kappa score, one first calculates the 

observed agreement (𝑝𝑜 ) between the raters, which is the 

proportion of instances where both raters agree. Next, the 

agreement that would be expected by chance alone (𝑝𝑒 ) is 

calculated, usually derived from the individual probabilities of 

each rater assigning each category. The Kappa score is then 

given by the formula: 

𝜅 =  
𝑝𝑜 −  𝑝𝑒

1 − 𝑝𝑒

 

5. Results 

In Figure 2, four distinct image states are visualized: the 

original image, the masked image, the reconstructed image 

after specific epochs, and a combined visualization of the 

reconstruction superimposed with the visible regions of the 

original image (reconstruction + visible). During the early 

stages of training, the MAE's ability to accurately reconstruct 

the masked portions of the image was nascent, with certain 

disparities evident when comparing the reconstructed and 

original images. By the 200th epoch, substantial 

improvements were apparent. The reconstructed images bore 

closer resemblance to the original images, indicating the 

MAE's progressing proficiency in capturing intricate details 

and nuances of the Fundus images. At the 500-epoch mark, the 

MAE's performance further matured. The reconstructed 

images were notably sharper, with the masked regions being 

restored with high fidelity. The reconstruction + visible 

visualizations further emphasized the minimal discrepancy 

between the reconstructed and original areas, underscoring the 

efficacy of the MAE's training. This sequential improvement 

in the MAE's outputs, as evidenced by the epochs, showcases 

the model's increasing capability to handle masked portions 

adeptly, setting the stage for effective contrastive learning in 

the subsequent Vision Transformer phase. 

We proceeded to fine-tune the Vision Transformer (ViT) 

using the APTOS 2019 dataset, renowned for its 

comprehensive collection of Fundus images labeled for 

Diabetic Retinopathy (DR) grading. The dataset is 

characterized by its multi-class nature, with each image 

assigned a DR grade that reflects the severity of the condition. 

. Our results, hence, underscore the potential of the integrated 

MAE and ViT pre-training methodology in enhancing the 

performance of Fundus image classification tasks, even when 

compared to established supervised learning paradigms. Our 

Figure 2 Generated images from Masked Autoencoder 



 

 

  

model exhibited notable efficacy. While a model with random 

initialization achieved a kappa score of 57.27 and a supervised 

learning approach using Imagenet reached 80.57, our ViT 

model surpassed both, registering a score of 82.49. This 

advancement not only highlights the effectiveness of our 

integrated MAE and ViT pre-training strategy but also 

signifies its potential in real-world medical image 

classification tasks, offering an enhanced alternative to 

traditional supervised paradigms. Detailed results are shown 

in Table 1. 

 Table 1 Results of fine-tuning of different methods 

 

   Figure 3 shows the training loss of our proposed method 

and supervised method. Firstly, the loss curve going down 

means our model does not overfit and the learning is effective 

as we train more epochs. This is important since we train ViT 

with much smaller dataset, compared to supervised learning.  

This also proves that the kappa score of our model is feasible. 

Furthermore, our method also achieves a lower loss compared 

to supervised learning method, explaining that higher kappa 

score, as well as the better performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Discussion and conclusion 

In this research, we proposed a novel pre-training 

methodology that synergistically combined the capabilities of 

the Vision Transformer (ViT) and the Masked Autoencoder 

(MAE) for disease diagnosis in Fundus images. Through our 

rigorous experiments and methodological design, our 

approach showcased superior performance, emphasizing the 

power of coupling reconstruction capabilities with contrastive 

learning. By efficiently leveraging the strengths of both 

models and ensuring optimal training conditions, we believe 

our method stands as a strong contender in the field of medical 

image analysis. 

While our proposed methodology has demonstrated 

commendable performance in Fundus image disease diagnosis, 

it's essential to acknowledge its limitations. One notable 

constraint is the model's reliance on the quality of masked 

reconstructions. If the Masked Autoencoder fails to generate 

accurate reconstructions, it might adversely impact the Vision 

Transformer's learning efficacy. Additionally, our method has 

been tailored specifically for Fundus images, and its 

generalizability to other medical imaging modalities remains 

to be tested. The choice of hyperparameters, while optimal for 

our dataset, might require fine-tuning for broader applications 

or diverse datasets. 

Looking ahead, several avenues present themselves for 

exploration. A natural extension would be to test our 

methodology's performance on other medical imaging 

modalities such as MRI, CT, or X-rays to ascertain its 

adaptability. It might also be worthwhile to investigate the 

integration of other self-supervised learning tasks or even 

combine multiple tasks concurrently to bolster the model's 

pre-training phase. Another promising direction is the 

incorporation of attention mechanisms or other state-of-the-art 

architectures to further enhance the model's capability to 

discern intricate patterns, especially in noisy or low-quality 

images. As the field of medical image analysis continues to 

evolve rapidly, we are optimistic that our foundational work 

will inspire advanced techniques that build upon our successes 

while addressing the acknowledged limitations. 
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