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In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT)
for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in
medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful
and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the
original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques
with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach
harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant
feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the
potential of our methodology in enhancing automated disease diagnosis in fundus imaging.

1. Introduction

Fundus imaging stands at the forefront of ophthalmic
diagnostics, providing a non-invasive technique to visualize
the retina, optic disk, and the underlying blood vessels.
Historically, the interpretation of fundus images has relied on
expert ophthalmologists, but with the sheer volume of medical
data and the intricacies involved in image interpretation,
automated systems for disease diagnosis are of paramount
importance. Properly trained, such systems can expedite
diagnosis, reduce human errors, and alleviate the strain on
healthcare professionals.

The challenge, however, lies in the need for large-scale
annotated datasets for supervised training, which are both
expensive and time-consuming to obtain in the medical
domain. Self-supervised learning has emerged as a promising
paradigm to address this issue. By designing tasks where the
data itself provides the supervision, models can be pre-trained
on large unlabelled datasets, capturing rich, intricate patterns

before fine-tuning on smaller labeled datasets.

The Vision Transformer (ViT) [1], which splits images into
fixed-size patches, linearly embeds them, and then processes
them in a series of transformer blocks, has recently achieved
state-of-the-art results in various image classification tasks.
Unlike the traditional convolution-based architectures, ViT
provides a global view of the image, potentially capturing
holistic patterns crucial for medical images. However, its
efficacy in medical image analysis, particularly in the context
of Fundus images, remains an area ripe for exploration.

In this paper, we bridge the gap by introducing a novel pre-
training methodology combining the power of ViT with self-
supervised learning principles tailored for Fundus image
disease diagnosis. Through our approach, we aim to harness
the global receptive fields of the Vision Transformer and the
potential of self-supervised learning to create a robust
diagnostic tool.

2. Related work



The scarcity of labeled medical data has made supervised
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Figure 1 Proposed system

training of deep models challenging. Self-supervised learning
(SSL), which exploits unlabeled data to learn rich
representations, offers a solution. In the medical imaging
domain, [2] employed SSL for cardiac MR image
segmentation by predicting the rotation angle of images.
Similarly, [3] proposed a method that involves training a
model to predict the sequence of shuffled patches from a
medical image. These approaches underscore the potential of
SSL in capturing intricate patterns from medical images
without explicit labeling, setting the stage for effective fine-
tuning with limited labeled datasets.

3. Methodology

Our pre-training methodology is structured as a synergy
between the ViT and the Masked Autoencoder (MAE) [4], as
shown in Figure 1. The process commences with random
masking of a given Fundus image. The masked image is fed
into the MAE, which aims to reconstruct the original image.
This reconstruction serves two-fold purposes: evaluating the
model's learning via Mean Absolute Error (MAE) and
providing a foundation for contrastive learning within the
Vision Transformer. The ViT then collaborates with the MAE
output to generate representations using contrastive loss. The
overarching goal is to ensure that these representations capture
essential features, enabling the Vision Transformer to later
engage in accurate disease diagnosis. Initially, both encoders

split the images into patches:
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where H,W is the resolution of the original images, C is the
number of channels, P is the resolution of each image patch,
and N = HW /P2 isthe number of patches.

The Masked Autoencoder (MAE) plays an important role
in generating a reconstructed image from the randomly
masked fundus image. The primary objective of the MAE is

the original, unmasked image. This error quantifies the
model's ability to handle masked inputs and is backpropagated
to fine-tune the MAE's parameters. Given the original image
I and the masked image Iy, , the MAE’s output
Lreconstructed » then the reconstruction loss is defined as:

1 N
Lreconstruction = N E . 1|Ioriginali— Ireconstructedil
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where N is the total number of pixels in the image. This error
quantifies the model's ability to handle masked inputs and is
backpropagated to fine-tune the MAE's parameters. The
output L.econstructea 1S constructed by the latent embeddings
Zreconstructed, Which is the output of the MAE model. We use
this representation as 1 of the positive pair for contrastive
learning using ViT.

The Vision Transformer is entrusted with the responsibility
of learning robust representations from the reconstructed
image and its original counterpart. The heart of this process is
the contrastive loss, ensuring that the embeddings of the
positive pair (original and reconstructed images) are closer in
the latent space compared to other negative samples. Let
loriginar 18 the original image, then Zyriging 1is the
representation obtained after training with ViT. The similarity

matrix is calculated by:
Zoriginal " Zreconstructed

Sim(zoriginal: Zreconstructed) =
”Zoriginal ”2 X ”Zreconstructed ”2

The contrastive 10ss Leonirastive 15 defined as:
eXp (Sim(zoriginal' Zrecanstructed)/‘[)
K .
Zk=1 eXp (SLm(Zuriginal' Zk)/T)
where T is the temperature parameter and z, are the
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embeddings of negative samples. The above loss pushes the
embeddings of the positive pair to be closer while pulling
away from the embeddings of negative samples. The
calculated loss is then backpropagated to optimize the Vision
Transformer's weights.
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Figure 2 Generated images from Masked Autoencoder

4. Implementation details

All Fundus images were resized to a uniform dimension of
224x224 pixels. During training, images were fed into the
model in batches of 64, an initial learning rate of 0.001,
temperature of 0.07 was used and The AdamW optimizer was
selected for training both the Masked Autoencoder and the
Vision Transformer. To further mitigate overfitting, especially
crucial given the high-dimensional nature of medical images,
a weight decay coefficient of 0.99 was implemented. This L2
regularization technique penalizes larger weights, pushing the
model to maintain smaller parameter values and thus a simpler
model. Data augmentation is also used to diversify the original
image, this makes the contrastive learning become more
effective. The pre-training phase, which involves the tandem
training of the Masked Autoencoder and Vision Transformer
using the proposed methodology, spans 1000 epochs. This
extensive pre-training ensures that the models thoroughly
learn the intricate patterns and representations of the Fundus
images. Following this, the Vision Transformer undergoes a
fine-tuning phase for disease diagnosis, lasting 100 epochs.
This stage refines the model's weights, optimizing it for the
specific task of disease classification.

For evaluation, we use kappa score, often referred to as
Cohen's Kappa coefficient, is a statistical measure used to
evaluate the agreement between two raters or classifiers,
accounting for the agreement that might happen by chance.
The coefficient provides a score between -1 and 1: a score of
1 indicates perfect agreement between the two raters, a score
of 0 suggests agreement is no better than chance, and a
negative value implies agreement is worse than random
chance. To compute the Kappa score, one first calculates the
observed agreement (p,) between the raters, which is the
proportion of instances where both raters agree. Next, the
agreement that would be expected by chance alone (p,) is
calculated, usually derived from the individual probabilities of
each rater assigning each category. The Kappa score is then
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5. Results

In Figure 2, four distinct image states are visualized: the
original image, the masked image, the reconstructed image
after specific epochs, and a combined visualization of the
reconstruction superimposed with the visible regions of the
original image (reconstruction + visible). During the early
stages of training, the MAE's ability to accurately reconstruct
the masked portions of the image was nascent, with certain
disparities evident when comparing the reconstructed and
original images. By the 200th epoch,
improvements were apparent. The reconstructed images bore
closer resemblance to the original images, indicating the
MAE's progressing proficiency in capturing intricate details
and nuances of the Fundus images. At the 500-epoch mark, the
MAE's performance further matured. The reconstructed
images were notably sharper, with the masked regions being
restored with high fidelity. The reconstruction + visible

substantial

visualizations further emphasized the minimal discrepancy
between the reconstructed and original areas, underscoring the
efficacy of the MAE's training. This sequential improvement
in the MAE's outputs, as evidenced by the epochs, showcases
the model's increasing capability to handle masked portions
adeptly, setting the stage for effective contrastive learning in
the subsequent Vision Transformer phase.

We proceeded to fine-tune the Vision Transformer (ViT)
using the APTOS 2019 dataset, renowned for its
comprehensive collection of Fundus images labeled for
Diabetic Retinopathy (DR) grading. The dataset is
characterized by its multi-class nature, with each image
assigned a DR grade that reflects the severity of the condition.
. Our results, hence, underscore the potential of the integrated
MAE and ViT pre-training methodology in enhancing the
performance of Fundus image classification tasks, even when
compared to established supervised learning paradigms. Our



model exhibited notable efficacy. While a model with random
initialization achieved a kappa score of 57.27 and a supervised
learning approach using Imagenet reached 80.57, our ViT
model surpassed both, registering a score of 82.49. This
advancement not only highlights the effectiveness of our
integrated MAE and ViT pre-training strategy but also
signifies its potential in real-world medical image
classification tasks, offering an enhanced alternative to
traditional supervised paradigms. Detailed results are shown
in Table 1.

Table 1 Results of fine-tuning of different methods
Models

Ours

82.49

Random

57.27

Supervised

80.57

Kappa score

Figure 3 shows the training loss of our proposed method
and supervised method. Firstly, the loss curve going down
means our model does not overfit and the learning is effective
as we train more epochs. This is important since we train ViT
with much smaller dataset, compared to supervised learning.
This also proves that the kappa score of our model is feasible.
Furthermore, our method also achieves a lower loss compared
to supervised learning method, explaining that higher kappa
score, as well as the better performance.

Training loss
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Figure 3 Training loss of our proposed method and
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6. Discussion and conclusion

In this research, we proposed a novel pre-training
methodology that synergistically combined the capabilities of
the Vision Transformer (ViT) and the Masked Autoencoder
(MAE) for disease diagnosis in Fundus images. Through our
rigorous experiments and methodological design, our
approach showcased superior performance, emphasizing the
power of coupling reconstruction capabilities with contrastive
learning. By efficiently leveraging the strengths of both
models and ensuring optimal training conditions, we believe
our method stands as a strong contender in the field of medical
image analysis.

While our proposed methodology has demonstrated
commendable performance in Fundus image disease diagnosis,
it's essential to acknowledge its limitations. One notable
constraint is the model's reliance on the quality of masked
reconstructions. If the Masked Autoencoder fails to generate

accurate reconstructions, it might adversely impact the Vision
Transformer's learning efficacy. Additionally, our method has
been tailored specifically for Fundus images, and its
generalizability to other medical imaging modalities remains
to be tested. The choice of hyperparameters, while optimal for
our dataset, might require fine-tuning for broader applications
or diverse datasets.

Looking ahead, several avenues present themselves for
exploration. A natural extension would be to test our
methodology's performance on other medical imaging
modalities such as MRI, CT, or X-rays to ascertain its
adaptability. It might also be worthwhile to investigate the
integration of other self-supervised learning tasks or even
combine multiple tasks concurrently to bolster the model's
pre-training phase. Another promising direction is the
incorporation of attention mechanisms or other state-of-the-art
architectures to further enhance the model's capability to
discern intricate patterns, especially in noisy or low-quality
images. As the field of medical image analysis continues to
evolve rapidly, we are optimistic that our foundational work
will inspire advanced techniques that build upon our successes
while addressing the acknowledged limitations.
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