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요       약 

Federated learning (FL) is a new paradigm in machine learning (ML) that enables multiple devices to 

collaboratively train a shared ML model without sharing their local data. FL is well-suited for applications where 

data is sensitive or difficult to transmit in large volumes, or where collaborative learning is required. The Internet 

of Underwater Things (IoUT) is a network of underwater devices that collect and exchange data. This data can be 

used for a variety of applications, such as monitoring water quality, detecting marine life, and tracking underwater 

vehicles. However, the harsh underwater environment makes it difficult to collect and transmit data in large 

volumes. FL can address these challenges by enabling devices to train a shared ML model without having to 

transmit their data to a central server. This can help to protect the privacy of the data and improve the efficiency of 

training. In this view, this paper provides a brief overview of Fed-IoUT, highlighting its various applications, 

challenges, and opportunities. 

 

1. 서론 

The Internet of Things (IoT) has been a breakthrough for 

the future of communications and computing and its 

development is growing dynamically [1]. IoT growth has 

been exponential in every field, including the Internet of 

Underwater Things (IoUT). The IoUT is a network of 

interconnected underwater devices that can sense, collect, 

and transmit data about the underwater environment. It is a 

promising technology for monitoring vast unexplored water 

areas [2]. Figure 1 is the general representation of underwater 

communication. 
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Figure 1: Underwater communication scenario. 

However, a large volume of data produced by sensors, 

cameras and hydrophones has led to the concept of Big 

Marine Data (BMD). To ensure that BMD is managed 

properly, machine learning (ML) was brought into the light, 

so that the features could be learnt, and knowledge could be 

extracted for decision-making [3]. 

In traditional centralized ML, data is gathered from 

numerous sources and used to train a ML model in a single 

location. Nonetheless, ML has its limitations, so the concept 

of Federated Learning (FL) was introduced which 

demonstrated the feasibility of FL and its ability to deliver 

strong performance across a range of ML tasks [4]. The key 

advantages of FL are shown in Figure 2. 

FL is a privacy-preserving ML approach where multiple 

parties can train a single model without sharing their raw 

training data. In FL, devices collaborate to train a global 

model on their local data and computational resources, while 

keeping their data private. This is done by exchanging only 

model updates, rather than the entire dataset, between the 

devices and the server [5]. Because of several advantages, 

there has been a growing interest in FL, and a few new FL 

algorithms have been proposed. FL is still a relatively new 

field, but it has the potential to revolutionize the way ML is 



 

 

  

used [6,7]. FL can be used to train ML models to analyze 

data such as water quality, temperature, and salinity and 

make predictions about the underwater environment while 

making it more secure and better [8,9]. 

Furthermore, recent studies have shown that federated 

transfer learning (FedTM) can be used to train ML models on 

a distributed network of devices without sharing local data. A 

combination of techniques, such as differential privacy and 

secure aggregation protects the privacy of local data and 

prevents defective nodes from influencing the training 

process [10]. 
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Figure 2: Key advantages of FL. 

In addition, Federated Meta-Learning (FML) enhanced 

Acoustic Radio Cooperative (ARC) has been able to solve 

the problem of insufficient training data at a single buoy, by 

using the data distributed over multiple buoys [11].   

This paper explores the utilization of FL within the 

context of IoUT and examines both the practical applications 

and the challenges that FL encounters in this domain. 

Additionally, it highlights various prospects and 

opportunities associated with FL in IoUT. 

2. Applications 

As the technology continues to develop, FL will likely be 

used in a wider range of applications to improve our 

understanding of the underwater environment and make it 

more sustainable. The trained ML models can be deployed on 

IoUT devices to monitor the environment in real -time. Some 

of the applications of FL in IoUT are described as follows: 

A. Environmental monitoring: To monitor the 

underwater environment for pollutants, changes in water 

quality, and other threats FL framework can be applied. This 

can help to protect the environment and ensure the safety of 

humans and marine life [8]. For example, oil leakage can 

have a devastating impact on the environment and marine 

life. The trained FL models can then be used to monitor the 

environment in real-time and alert authorities to any oil spills. 

B. Underwater navigation: To navigate underwater 

vehicles, which can be used for search and rescue operations, 

disaster relief, and other applications. For example, coral 

reefs are complex and fragile ecosystems, and it is important 

to navigate through them carefully to avoid damage. FL 

models can be trained from many underwater vehicles and 

sensor data that have navigated through or observed the coral 

reefs. This data can then be used to navigate through coral 

reefs safely and efficiently. 

C. Underwater device fault detection: To detect faults in 

underwater equipment, such as sensors and actuators. For 

example, underwater sensors are critical for many 

applications, such as navigation, communication, and 

monitoring. Faults in underwater sensors can lead to 

accidents and other problems. Underwater sensors can collect 

the data regarding the faults and the FL models can be 

trained accordingly to detect the faults. The trained models 

can then be used to monitor the sensors in real-time and alert 

operators to any faults. 

D. Fish migration: To predict fish migration patterns, 

which can be used to improve fishing practices and conserve 

fish populations [8]. These fish are important to the 

ecosystem, but their populations are declining. FL uses the 

data collected from sensors that are deployed in the ocean to 

track the migration patterns of these fish. The trained FL 

models can then be used to predict the migration patterns of 

these fish in real-time. This information can be used to 

conserve these fish populations. 

3. Challenges and Opportunities 

FL faces several significant challenges when applied to 

the IoUT, however, researchers are continuously working to 

make it better. Figure 3 shows the key challenges of FL in 

IoUT. 
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Figure 3: Key Challenges of FL in IoUT. 

A. Communication constraints: The communication 

between devices in underwater IoT networks is often 

unreliable and has high latency. This can make it difficult to 

train FL models, as the devices may not be able to 

communicate with each other frequently enough. The 

underwater environment is a harsh environment, and it can 

be difficult to maintain reliable communication between 

devices. The water can absorb and scatter radio waves, 

making it difficult for devices to communicate with each 

other. The water can also be turbulent, which can cause the 

communication signal to be disrupted. To address this 

challenge, researchers are developing new communication 

protocols that are more reliable and have lower latency for 

IoUT networks. 

B. Limited computing power: The devices in IoUT 

networks are often resource-constrained, with limited 

computing power and battery life. This can make it difficult 

to train FL models, as the devices may not be able to run the 



 

 

  

required computations. For example, consider an FL model 

that is being trained to predict fish migration patterns. The 

model needs to be able to process a large amount of data 

from many sensors. However, the devices that are collecting 

the data may not have enough computing power to process 

the data. This can make it difficult to train the model. To 

address this challenge, researchers are developing FL 

algorithms that are more efficient and can run on resource-

constrained devices. They are also developing new ways to 

distribute the training of FL models across multiple devices. 

C. Environmental challenges: The underwater 

environment is harsh and can damage devices. This can make 

it difficult to deploy and maintain FL models in IoUT 

networks. The underwater environment is harsh, and it can be 

difficult to deploy and maintain devices in this environment. 

The water can be corrosive, and it can also contain sediments 

and other debris that can damage devices. The water pressure 

can also be high, and this can also damage devices. 

Researchers are developing FL models that are more resilient 

to the harsh conditions of the underwater environment. 

D.  Security challenges: FL models are trained on data 

that is distributed across many devices. This makes them 

vulnerable to security attacks, such as data poisoning and 

model inversion attacks [8]. In a data poisoning attack, an 

adversary can inject malicious data into the training data of a 

FL model. This can cause the model to learn incorrect 

patterns, which can lead to the model making incorrect 

predictions. In a model inversion attack, an adversary can try 

to infer the private data of a device from the model 

parameters that are shared during the FL training process. 

This can be done by reverse engineering the model and using 

the model parameters to reconstruct the private data. To 

address these challenges the FL model should include data 

encryption and third-party security. 

4. Conclusion 

Federated learning (FL) is a promising technology for 

Internet of Underwater Things (IoUT) applications. It has the 

potential to improve the security, efficiency, and scalability 

of IoUT systems. However, several challenges need to be 

addressed before FL can be widely adopted for these 

applications. Researchers are actively working to overcome 

these challenges and make FL a more feasible solution for 

IoUT applications. This paper discussed the various key 

applications of FL for IoUT, as well as the key challenges 

and opportunities that need to be addressed. FL is expected to 

play an increasingly important role in the future of IoUT. 
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