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Abstract 

We propose a method of movie recommendation that involves an algorithm known as spectral 

bipartition. The Social Network is constructed manually by considering the similar movies viewed by 

users in MovieLens dataset. This kind of similarity establishes implicit ties between viewers. Because 

we assume that there is a possibility that there might be a connection between users who share the 

same set of viewed movies. We cluster users by applying a community detection algorithm based on 

the spectral bipartition. This study helps to uncover the hidden relationships between users and 

recommend movies by considering that feature. 

 

1. Introduction 

Network (also known as graph, we interchangeably 

use these terminologies) is a discrete complex 

structure and a way of modeling different real-world 

systems [1]. Analyzing networks is a very broad field 

from its abstract theory to practical applications. 

However, not all the facets are of interest to us. 
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Detecting communities, partitioning the graph into 

several groups, is the main part that we have found 

useful for our research experiment.  

In order to detect communities, we constructed a 

network of users by establishing a connection between 

them if both of them have the same set of viewed 

movies in common. Aforementioned criterion is a mere 

mailto:ilkhomjon.sadriddinov@gmail.com
mailto:dyoung.kim@sch.ac.kr
mailto:parkds@sch.ac.kr


 

 

  

assumption and a way of forming a network of users. 

In the context of Social Network Analysis (SNA), these 

sorts of relationships are called implicit ties. Because 

in contrast to explicit tie, the implicit tie is not a direct 

connection between users (or any object that is 

assumed as nodes), instead, the tie is mediated by 

representation of specific features [2]. We then 

classified new users to discovered clusters by a 

similarity metric.  

The contribution of this paper is that we showed 

how recommendation systems can leverage from the 

hidden relationships among users, in particular, a built 

implicit social network.  

The remainder of this research paper is organized as 

follows. Section 2 provides important terminology, 

formally defines what is the graph, community and 

related theoretical context. Section 3 contains the 

experiment where we implemented spectral 

partitioning. In Section 4, we discussed the result and 

represented the evaluation outcome. 

 

2. Preliminaries: Definitions and examples 

In this section we discuss graphs, their structural 

properties and spectral partitioning alongside the 

Laplacian matrix. 

In the formal context, a graph G consists of a  

finite nonempty set V of objects called vertices  

(the singular form is vertex) and a set E of 2- 

element subsets2 of V called edges [3]. It is also  

common to represent V(G) and E(G) for vertex set  

 
2 Unordered pairs of vertices. 

 

and edge set of graph G, respectively.  

In the Figure 1, the vertex set of graph3 G is V(G) 

= {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}  and the edge set of G is 

𝐸(𝐺) =

{{𝑣1, 𝑣2},   {𝑣1, 𝑣3}, {𝑣1, 𝑣5}, {𝑣2, 𝑣4}, {𝑣3, 𝑣4}, {𝑣3, 𝑣5}, {𝑣4, 𝑣5}}   

In contrast to Figure 1, there is another way of 

representing graph — an adjacency matrix - which is 

very convenient for further computation and analysis. 

The definition of the adjacency matrix A for an 

undirected graph to be the matrix with elements: 

𝐴𝑖𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑗𝑜𝑖𝑛𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖, 𝑗,
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

In our study, we built a weighted network, where the 

connections are not merely binary entities (like the 

definition (1)), that can be represented also 

mathematically by an adjacency matrix [4]:  

  𝐴𝑖𝑗 = 𝑤         (2) 

where, 𝒘 is a weight on edge between 𝒊 and 𝒋 

vertices. The weight can be also expressed as a map:  

 𝑤: 𝐸 ⟶ ℤ+      (3) 

Note that, in general, the weight can be any real 

number ( 𝒘({𝒊, 𝒋}) ∈ ℝ ), however, we restrict our 

attention in this paper to network having weights only 

with non-negative integers. For example:  

    𝑣1  𝑣2   𝑣3   𝑣4   𝑣5 

≡

(
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Figure 2 

Since graph and its representation are defined, now 

3 We assume here and for the rest of paper that the network is 

an undirected graph having bidirectional edges. 

Figure 1 



 

 

  

we can move on another property — a degree of a 

vertex. The degree of a vertex in an undirected graph 

is the number of edges incident with it, except that a 

loop at a vertex contributes twice to the degree of that 

vertex [5]. The degree of the vertex 𝒊 is denoted by 

𝒅𝒆𝒈(𝒊) . We can further define the 𝒅𝒆𝒈(𝒊) function 

with the summatory form using definition (1): 

𝑑𝑒𝑔(𝑖) = 𝑘𝑖 =∑𝐴𝑖𝑗
𝑗

 (5) 

We turn now to the substructure of a network which 

is known to be a community(partition). In the context 

of graph theory, the field concerned with such a 

structure is community detection. When G(V,E) and 

C(W,F) are graphs, C is called to be a subgraph of 𝑮, 

written as 𝑪 ⊆ 𝑮 , if 𝑾(𝑪) ⊆ 𝑽(𝑮)  and 𝑭(𝑪) ⊆ 𝑬(𝑮) 

are true [3]. At the same time a community is a 

subgraph.  One can see other terminologies that can 

be used interchangeably with community detection: 

graph or network clustering. And yet it is not 

universally defined [6]. Therefore, we provide a concise 

and easy–to–understand definition — gathering of 

vertices into groups such that there is a higher density 

of edges within groups that between them [7]. Many 

community detection algorithms work with 

unweighted networks. And yet there are some works 

that generalize the algorithm by carrying over with 

little or no modification so that it is extended to work 

with weighted networks. We start our discussion with 

spectral partitioning of graph that is analogous to the 

leading eigenvector method [8]. The problem 

statement is that a given graph is required to be 

bisected into two subgraphs so that the number of 

edges removed must be as few as possible.  

In a formal context, the number of removed edges 

is called a cut size:  

𝑅 =  
1

2
∑ 𝐴𝑖𝑗
𝑖,𝑗 𝑖𝑛 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 
𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠

 
(6) 

For our algorithm, we need to define a Laplacian 

matrix: 

𝐿𝑖𝑗 = {

𝑘𝑖 ,   𝑖 = 𝑗,                                                 
−𝑤(𝑖, 𝑗), 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 {𝑖, 𝑗}

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

, (7) 

(If a graph G is unweighted, then indices of 𝑳𝑮 

correspond to edges of graph G are -1) 

If a graph G(V,E) is given and the 𝑳𝑮 is a Laplacian 

matrix of G, then the eigenvalues and corresponding 

eigenvectors of 𝑳𝑮  are 𝝀𝟏, 𝝀𝟐, 𝝀𝟑, ..., 𝝀𝒏  and 

𝐱𝟏, 𝐱𝟐, 𝐱𝟑,...,𝐱𝐧, respectively(where 𝒏 = |𝑽|).   

To find the bipartition, we take the second 

eigenvector of the Laplacian matrix, 𝐱𝟐, corresponding 

to 𝝀𝟐(these are also known to be Fiedler value and 

Fiedler vector [8]).  

As a result, now we can show partitions that are 

𝑷𝟏 = {𝒗𝒊| 𝒗𝒊 ∈ 𝑽 𝒂𝒏𝒅 𝐱𝒊
(𝟐)
≥ 𝟎 }  and 𝑷𝟐 = {𝒗𝒊| 𝒗𝒊 ∈

𝑽 𝒂𝒏𝒅 𝐱𝒊
(𝟐) < 𝟎 }, where the 𝐱𝒊

(𝟐) is 𝒊th element of 𝐱2.  

The computational complexity of spectral clustering 

is 𝑶(𝒏𝟑), where 𝒏 is the number of vertices in a given 

graph [9]. 

 

3 Implementation 

In this section, we represent an implementation of 

the method described in Section 2. 

 

3.1 Dataset 

MovieLens100K contains 943 users and 1682 

items(movies). There exist 100,000 ratings, where 

ratings are in the 0-5 range. We also used the 

demographic vector of users provided inside this 

dataset. It contains age, occupation, and gender.  

In Table 1 below we expressed some important 

information with corresponding set of notations for 

our further experiment. 

 



 

 

  

3.2 Constructing an Implicit Social Network 

Based on the criterion, an assumption that there  

is a relationship between users who share the same 

set of movies, we built a network G. 

Notation Description 

𝑈 Set of users 

𝑀 Set of movies 

𝑟𝑢𝑚 
Rating for movie 𝑚 by user 𝑢(𝑚 ∈

𝑀, 𝑢 ∈ 𝑈) 

𝑟𝑢𝑚̂ 
Predicted rating for movie 𝑚 by user 

𝑢(𝑚 ∈ 𝑀, 𝑢 ∈ 𝑈) 

𝑑𝑢 Demographic vector of user 𝑢(𝑢 ∈ 𝑈) 

𝑀𝑢 
Proper subset of 𝑀 representing a set 

of movies watched by user 𝑢(𝑢 ∈ 𝑈) 

𝑈𝑡𝑟𝑎𝑖𝑛 
Proper subset of 𝑈 representing a set 

of users used for training model 

𝑈𝑡𝑒𝑠𝑡 
Proper subset of 𝑈 representing a set 

of users used for testing model 

Table 1 

We split user dataset into two parts: training set 

(𝑼𝒕𝒓𝒂𝒊𝒏) and testing set (𝑼𝒕𝒆𝒔𝒕) with the ratio 4:1. Now 

considering described assumptions above, network G 

is defined as G(V,E), where 𝑽 = 𝑼𝒕𝒓𝒂𝒊𝒏  and 𝑬 =

{{𝒖𝒊, 𝒖𝒋}| 𝒖𝒊, 𝒖𝒋 ∈ 𝑼𝒕𝒓𝒂𝒊𝒏, 𝑴𝒖𝒊 ∩𝑴𝒖𝒋 ≠ ∅, 𝒖𝒊 ≠ 𝒖𝒋} . Below 

the adjacency matrix 𝑨 of a network G is defined. 

𝐴𝑢𝑖𝑢𝑗 = {
0,   𝑀𝑢𝑖

∩𝑀𝑢𝑗
= ∅   𝑜𝑟 𝑢𝑖 = 𝑢𝑗,                 

𝑛,    | 𝑀𝑢𝑖
∩𝑀𝑢𝑗

| = 𝑛                                      
   (8) 

Note that, the newly composed graph is undirected, 

weighted, and does not contain self-loop4.  

Once the construction process has been completed, 

we can see that the network had 730 vertices and 

256,482 edges. Network is very dense in terms of 

number of edges, almost close to its maximum limit 

266,085 (𝒏(𝒏 − 𝟏)/𝟐, 𝒏 =  |𝑽|). The reason for this is 

easy to state — given a set 𝑼𝒕𝒓𝒂𝒊𝒏 consisting of 𝒏 

users, a graph was formed by establishing an edge 

between couple of users even they share at least single 

movie in common. In a real-world scenario, it is natural 

to see that phenomenon: many viewers can have a 

 
4An edge that connects a vertex to itself.  

similar view history of movies. 

 

3.3 Partitioning a network 

Since the algorithm described in Section 2 bisects a 

network into two parts, we iterated the same process 

of partitioning for each of those two parts to get four 

subgraphs. Based on the definition of a subgraph in 

Section 2, we can now show the following expression: 

⋃𝑪𝒊

𝟒

𝒊=𝟏

= 𝑪𝟏 ∪ 𝑪𝟐 ∪ 𝑪𝟑 ∪ 𝑪𝟒 ⊆ 𝑮 (9) 

Even though it is very obvious that the Eq. (10) is 

true, this is a very important property that shows there 

are no overlaps among discovered subgraphs. 

⋂𝐶𝑖

4

𝑖=1

= 𝐶1 ∩ 𝐶2 ∩ 𝐶3 ∩ 𝐶4 = ∅ (10) 

Table 2 provides reader the descriptive information 

about the subgraphs. 

Subgraphs Number of vertices Number of edges 

𝐶1 192 18209 

𝐶2 201 19937 

𝐶3 159 12531 

𝐶4 178 15719 

Table 2 

3.4 Classification to Clusters 

Now we turn to classifying users from test set (𝑼𝒕𝒆𝒔𝒕) 

to the clusters by considering the similarity of their 

demographic vectors (𝒅𝒖). When 𝒅𝒖𝒊 , 𝒅𝒖𝒋 ∈ ℝ
𝟑 is given, 

let 𝒔𝒊𝒎  to be a function takes two vectors as 

parameter and generates a Euclidean distance 

between them: 

𝑠𝑖𝑚 (𝑑𝑢𝑖 , 𝑑𝑢𝑗) = √∑(𝑑𝑘
(𝑢𝑖) − 𝑑𝑘

(𝑢𝑗)
)2

3

𝑘=1

     (11) 

For classification we need to find the centroids (in 

Eq. (12)) of each cluster(subgraph) so that then we can 

find the similarity with other users from the test set 

(𝑼𝒕𝒆𝒔𝒕). When 𝒌th cluster is defined as 𝑪𝒌(𝑽𝑪𝒌 , 𝑬𝑪𝒌), 

then a centroid of it is 

𝛼𝑘 =
1

𝑛
∑𝑑𝑢𝑖

𝑛

𝑖=1

 (12) 



 

 

  

Where, 𝒏 = |𝑽𝑪𝒌| and 𝒖𝒊 is corresponding user for 

the vertex 𝒗 ∈ 𝑽𝑪𝒌 . 

Based on Eq. (11) and (12), now it is possible to 

define a classification function 𝜹. When 𝒖𝒊 ∈ 𝑼𝒕𝒆𝒔𝒕 is 

given, we can define the classification function for user 

𝒖𝒊 as  

𝛿(𝑢𝑖) =

{
 
 

 
 
1, 𝑠𝑖𝑚(𝑑𝑢𝑖 , 𝛼1) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡,

2,         𝑠𝑖𝑚(𝑑𝑢𝑖 , 𝛼2) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡,

3, 𝑠𝑖𝑚(𝑑𝑢𝑖 , 𝛼3) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡,

4, 𝑠𝑖𝑚(𝑑𝑢𝑖 , 𝛼4) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡

 (13) 

 

4 Results and Discussion 

After the classification, we evaluated the outcome of 

our algorithm. There are plenty of metrics out there, 

however, we preferred MAE (Mean Absolute Error) 

over others. If we consider the single user 𝒖𝒊 ∈ 𝑼𝒕𝒆𝒔𝒕 

and want to find the MAE metric to see how well the 

model predicted the set of ratings for 𝒖𝒊, then we can 

use Eq. (14): 

𝑀𝐴𝐸𝒖𝒊 =
1

𝑛
∑ (𝑟𝒖𝒊𝒎 − 𝑟𝒖𝒊𝒎̂)

2

𝑚∈𝑀𝒖𝒊

 (14) 

Where, 𝑛 =  |𝑀𝒖𝒊|. 

Below we show how to predict the rating of a user 

𝒖𝒊  on movie 𝒎.  

𝑟𝒖𝒊𝒎̂ =
1

𝑛
∑ 𝑟𝒖𝒋𝒎

𝑢𝑗∈𝐶𝛿(𝒖𝒊)

 (15) 

Where, 𝒏 =  |{𝒖𝒋|𝒖𝒋 ∈ 𝑪𝜹(𝒖𝒊) 𝒂𝒏𝒅 𝟎 ≤ 𝒓𝒖𝒋𝒎 ≤ 𝟓}|. 

We calculated MAE value 10 times: each time we 

selected 10 random users and 10 random movies 

watched by the corresponding users. On average, the 

MAE value was 0.95. In our case, 𝑀𝐴𝐸𝒖𝒊 ∈ [0,5] is true, 

since 𝑟𝑢𝑚 ∈ {0,1,2,3,4,5} is also true for 𝑚 ∈ 𝑀, 𝑢 ∈ 𝑈. 

We can interpret 0.95 as the error that might occur 

when we apply our method. More precisely, if we want 

to recommend a movie based on the rating calculation, 

shown in Eq. (14), then on average there is a possibility 

that the model slightly varies than the actual rating.  
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