2020 22fel FAIstewE 3| =% H273 H|22 (2020, 11)

SG-Drop: Faster Skip-Gram by Dropping Context Words

1

DongJae Kim, DoangJoo Synn, Jong-Kook Kim
Dept. of Electric and Electronics Engineering, Korea University
dong4810@korea.ac.kr, alansynn@korea.ac.kr, jongkook@korea.ac.kr

ABSTRACT
Many natural language processing (NLP) models utilize pre-trained word embeddings to leverage latent infor-
mation. One of the most successful word embedding model is the Skip-gram (SG). In this paper, we propose a Skip-
gram drop (SG-Drop) model, which is a variation of the SG model. The SG-Drop model is designed to reduce
training time efficiently. Furthermore, the SG-Drop allows controlling training time with its hyperparameter. It could
train word embedding faster than reducing training epochs while better preserving the quality.

1. INTRODUCTION

Language Model (LM) has a long history in natural lan-
guage processing and is based on various NLP tasks such as
Machine Learning Translation (MLT) tasks [1]. The earlier
LM was introduced with statistical LM to cover various lin-
guistic representations by assigning probabilities to a partial
word sequence. Nevertheless, the statistical LM has a signifi-
cant limitation since it needs to compute sequences of condi-
tional probabilities. There were several approaches to solve
this problem, such as the N-gram model. They were based on
the approximation and still had a fundamental problem, such
as dimensionality.

The distributional hypothesis [15], which is the essential
idea of distributed representation for words, provides a funda-
mental theory to integrate semantics into word representations.
It describes that the words that occur in the same contexts tend
to have similar meanings. The Neural Network Language
Model (NNLM), introduced [2][3], enables language model-
ing in continuous space to avoid the curse of dimensionality
based on the distributional hypothesis. The key concept of
NNLM [2] was learning a distributed representation for words,
which converts the word sequence into a low dimensional vec-
tor, the word embeddings. The distributed word representation
models perform better than the former approaches, such as N-
gram LM, and emerged as an empirical topic.[14]

In 2013, Word2vec [5] [6] proposed two popular word rep-
resentation models: Continuous Bag-Of-Words (CBOW) and
Skip-gram (SG). SG and CBOW share the same fundamental
idea that the words similar to each other are likely to have sim-
ilar co-occurrence of neighbor words. The CBOW model
learns the relationship of context and words by predicting the
center word with the nearby words, and the SG does vice versa.

These two popular word representations do not have non-lin-
ear hidden layers. Therefore, the models could process the
large datasets much faster than the former NNLM based mod-
els. Many studies have shown by adapting word embeddings
[4], semantics between center word and context words can be
modeled and captured. As a result, the word embeddings have
become the mainstream methods of distribution representa-
tions and widely used on NLP tasks such as text classification,
inference, and knowledge mining.

Though CBOW generates the 1-dimensional average vec-
tor from the nearby word vectors, SG predicts the context
words given the center words. This main difference makes SG
to have more prediction pairs than CBOW. There have been
various approaches to improve the word embedding quality
from the promising enhancements of word representations.
Pennington et al. [7] focused on the global statistical infor-
mation. Ling et al. [8] suggested improving word embedding
leveraging position information. Faruqui et al. [9] introduced
a post-processing technique that utilizes semantic lexicons.

There are many corpus types from various sources such as
medical corpus, blog corpus, social network corpus. Though
multiple corpora can be mixed to learn common semantics,
they can be trained independently to learn their unique char-
acteristics. Furthermore, in the era of the internet, the size of
the unlabeled text is rapidly growing. If we could train the
word embedding model faster, it will be easier to handle those
works.

In this work, we describe a simple modification to
Word2Vec’s Skip-gram model that improves learning speed.
Training a single pair of a center word and its nearby word
with negative sampling requires multiple vector scalar prod-
ucts and memory accesses. The SG-Drop model aims to drop

! This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education(NRF-2016R1D1A1B04933156) This work was supported in part by the National Re-
search Foundation of Korea (NRF) through the Basic Science Research Program funded by the Ministry of Education under
Grant 2014R1A1A2059527, and in part by the Information Technology Research Center (ITRC), Ministry of Science and ICT
(MSIT), South Korea, through a Support Program under Grant IITP-2020-2018-0-01433, supervised by the Institute for Infor-

mation and Communications Technology Promotion (IITP)

- 1014 -

2020 220l =A|stautErl 5]

=27 272 ®|23 (2020, 11)

some context words during the training process. Our goal is to
make the original model keeps its simplicity with the higher
speed and low memory access to work properly on low-per-
formance hardware. We expect the SG-Drop model to run ef-
ficiently on the commodity hardware and be used in various
fields such as on-device learning and online sentiment classi-
fication [10].

2. RELATED WORK

2.1 Skip-gram
The Skip-gram model was introduced in popular Word2vec [5]
[6]. The SG model learns word embeddings by leveraging the
relation between a word and its adjacent words. The SG’s ob-
jective function is to maximize the average log probability
given vocabulary size |V|:

14!

Lse = |7| log p(Weyi | we)

t=1 o<li|sc
where w, and w;,,; denote a center word and its context
word. Though the probability p(w;,; | w;) can be estimated
with softmax function, it requires more computation as the vo-
cabulary size increases. Hence, the negative sampling objec-
tive is preferred for large |V|. Given N as negative samples,
negative sampling objective is defined:

log (a(v,jvfﬂth)) + Z log (a(vlfvngt))
Wp €N
where v and v’ refer to the input and output vector repre-
sentation of the corresponding word and ¢ denotes sigmoid
function.

2.2 Memory Efficient Approaches on NLP Tasks

Although deep learning models have shown good accuracy,
deploying the models in production and execute on-line learn-
ing poses significant memory constraints. For NLP tasks, the
typical word embedding vector holds 60M parameters on the
embedding matrix, which would cost up to 100Gbs of memory
[17]. Shu and Nakayama [17] have shown that their simple
sentiment analysis model costs up to 98.8% of its parameters
on the entire network's embedding vectors.

The former researches [17][18][19] have focused on com-
pressing the word embedding matrix by hashing or quantiza-
tion-based approaches. These approaches make the additional
process and give additional latency and need to be tuned.
Acharya [16] proposed a low-rank projection of the embed-
ding layer using Singular Value Decomposition (SVD). Since
the Acharya has shown promising results on sentiment analy-
sis on specific tasks, the low-rank matrix factorization (LMF)
reduces the dimensionality and obtains the high compression
rate. However, dimensionality reduction means the loss of the
embedding layer for certain original information on training.

3. SKIP-GRAM DROP
Reducing train epochs can easily shorten the training time.
However, this naive approach is prone to performance

15000
10000
o I I I I I I
0
N D X P K N
O OV Q7 F o S o
TN Y K S Q<o Q{\ AN

Figure 1. Histogram of prediction values in the SG model
when the center word is “ice”.

degradation due to the decreased number of training samples.
The SG-Drop model suggests attaining faster training by drop-
ping context words, which seem to be relatively less important.
The experiment in Section 4.3 is conducted to compare our
model to simply reducing epochs.

The SG-Drop model’s overall architecture is the same as
the SG except that it makes a drop decision for every pair of a
center word and its nearby word. Whenever a drop decision is
needed, the SG-Drop calculates a probability to drop a given
pair with a drop probability function. The drop probability
function is a function that returns a probability given a center
word and its nearby word as input.

The drop probability function returns a lower probability
for the context words, which seem to be more relevant. Since
the SG-Drop model aims to improve training speed, the drop
probability function should not be a compute-intensive func-
tion. If the decision making takes a long time, it could offset
the learning time gain by dropping words.

The less critical words are nearby words that are less related
to the meaning of the center word.

“I am so hungry that I could eat a horse.”

In an example sentence above, the word “hungry” could
have “I”” and “eat” as context words when the context window
size is five. However, they are not equally relevant to the
meaning of the word “hungry”. Dropping those less relevant
words could make dropping effective. Though people can cas-
ily find those less critical words, a computer needs a proper
measure.

Depending on the distributed hypothesis and the architec-
ture of the SG, we can assume that relevant words are more
predictable. Using o(1,”, ,14,,) term, which is part of the SG
negative sampling loss, could easily estimate the relatedness.
However, dropping less relevant words with low a(vw t+lth)

values is dangerous. Figure 1 shows the histogram of

a(th vat) when training the SG model on the small corpus.
The number of a(vWH th) values lower than 0.5 is much
larger than the counterpart.

We use a simple trick to find less related words. The SG-
Drop model selects a random negative sample word w,, and
regards context words with high o(vy, " V') as less

- 1015 -

2020 22fel FAIstewE 3| =% H273 H|22 (2020, 11)

relevant words. Hence, the drop probability function returns
drop probability with the following equation:
MDP + (1 — MDP) o(vy,” v'w,,)

where minimum drop probability (MDP) is a hyperparameter.
The MDP is introduced to control training speed while without
bias. Furthermore, this method is SG friendly because the SG
selects random negative samples for every training step. Thus,
we could reuse a negative sample to save computation re-
sources.

The final decision is made with the calculated probability,
and a randomly generated number ranged between zero and
one with a uniform distribution. The purpose of the probabil-
istic drop is to avoid a bias that can be created by wrong relat-
edness evaluation. Also, to guarantee to learn from all possible
pairs in the corpus at least once, we conduct the first epoch of
training without context word drops. Since the SG-DROP
model trains word embeddings without a drop on the first
epoch, we can assume that relatedness is trained in word vec-
tors through the co-occurrence in the corpus. Thus, we could
effectively drop context words with word vectors trained dur-
ing the first epoch.

4. EXPERIMENT

4.1 Experiment Setup

For model evaluation, we created a large corpus and a small
corpus for training. We created a large corpus with the follow-
ing procedures.

1. The plain text was extracted from the latest Wikipedia
dump to generate the large corpus.

2. The plain text was processed to remove Wikipedia tags
and to break into sentences.

3. Sentences with less than ten words were filtered to re-
move too broken sentences during the Wikipedia tag
removal process.

The small corpus was created by a 1% random sampling of the
sentences in the large corpus. We conducted all the training
process on Ubuntu 20.04 installed system with 32 core AMD
Threadripper 3970X processor.

Hyperparameter Value
Dimension 200
Widow Size 5
Negative Samples 5
Epoch 5
Learning Rate 0.025

Table 1. Commonly used hyperparameters

4.2 Baseline and Dataset

As a baseline model, the SG model [5] [6] was used. Table 1
describes commonly used hyperparameter values for the SG
and the SG-Drop model. To evaluate trained word embeddings,
we performed word similarity evaluation tasks. Following
word similarity datasets were used in our experiments: Sim-
lex-999[11], Wordsim-353[12], MEN-3000[13].

Simlex Wordsim MEN Time(s)
SGepoch=s 33.35 65.95 63.28 98.1
SGDypp=o 32.68 65.40 62.29 81.3(17.13%)
SGgpoch=a 3221 63.66 60.76 76.9(21.61%)
SGDypp=0.25 31.73 64.93 60.16 67.5(31.19%)
SGgpoch=3 31.18 61.64 57.09 58.4(40.47%)
SGDypp=0.5 30.81 62.33 57.77 52.6(46.38%)
SGgpoch=2 29.03 56.75 51.37 39.5(59.73%)
SGDypp=0.75 29.67 59.64 54.29 37.4(61.88%)
SGepoch=1 24.48 47.6 42.74 20.8(78.8%)

Table 2. Result of the word similarity evaluation on the small
corpus. Percentage in time column denotes relative speedup.

4.3 Epoch and Skip-gram Drop

The table 2 shows the result of word similarity evaluation
tasks. The SGD in the table is the abbreviation of the SG-Drop
model. The SG model, trained with five epochs, shows the best
result because it does not sacrifice training samples. The SG-
Drop model trained with MDP=0 shows minor performance
reduction with about 17% speedup. The SGD models with
MDP = 0.5 and 0.75 have faster training time with better over-
all performance than the SG models trained with epoch = 3
and 2. Thus, the SG-Drop model is a more efficient way to
reduce training time than reducing the training epoch. Also,
The SGD models tend to show less performance degradation
on the Wordsim dataset.

Simlex Wordsim MEN Time(s)
SGuwin=10 33.33 67.62 67.05 165.2
SGDyin=10 32.77 67.65 66.17 135.5(17.98%)
SGuwin=15 32.62 68.81 68.79 2233
SGDyin=15 32.54 68.49 68.22 182.3(18.32%)

Table 3. Result of evaluation on different window sizes.

4.3 Window Size

In this experiment, we trained the SG and the SGD model with
window size 10 and 15. The table 3 illustrates the result. If the
window size increases, the number of less relevant words in
the context window is likely to increase. As a result, the over-
all performance loss is reduced with increased speedup. It is
observed that the SGD model works better with various con-
text window size.

Simlex Wordsim MEN Time(hour)
SG 36.88 71.65 74.81 3.05
SGDypp=o 36.87 71.29 74.79 2.48(18.69%)
SGDypp=0.75 36.26 70.33 74.28 1.12(63.28%)

Table 4. Result of word similarity evaluation on the large cor-
pus.

4.5 Corpus Size

Table 4 shows the similarity evaluation tasks on the large cor-
pus. In a large corpus, the SG-Drop with MDP = 0 showed
merely no performance reduction except the Wordsim dataset.

- 1016 -

2020 22fel FAIstewE 3| =% H273 H|22 (2020, 11)

We also trained the SG-Drop with MDP=0.75 to further ex-
plore its efficiency on the large corpus. As the result shows,
the SG-Drop model suffers a smaller decline than on the cor-
pus composed of fewer words.

5. CONCLUSION

In this paper, we presented the simple augmentation, which
boosts training speed with reasonable performance reduction.
Besides, the SG-Drop allows users to control speedup with the
hyperparameter MDP. Experimental data showed that the SG-
Drop model efficiently reduces training time than reducing
training epochs and performing well with various environ-
ments. We expect our model to be applied to services where
fast learning time is required or NLP research on low compu-
ting power devices such as mobile devices.

Furthermore, our model could be more mobile device
friendly. While the SG-Drop model provides faster training
experience, it still needs a parameter size proportional to vo-
cabulary size and dimension. As a result, mobile devices still
have difficulty locating the embedding matrix on its memory.
However, applying quantization or LMF methods described in
section 2.1 could solve this issue. Our future work targets to
our model more mobile compatible on mobile devices.

REFERENCES

[1] Kun Jing and Jungang Xu. “A Survey on Neural Network
Language Models” arXiv preprint arXiv:1906.03591,
2019.

[2] Yoshua Bengio, Re’jean Ducharme, Pascal Vincent, and
Christian Janvin. “A neural probabilistic language model”
J. Mach. Learn. Res., 3:1137-1155. 2003.

[3] Ronan Collobert and Jason Weston. “A unified architecture
for natural language processing: Deep neural networks
with multitask learning” In Proceedings of the 25th Inter-
national Conference on Machine Learning, ICML 08,
pages 160—167, New York, NY, USA. ACM, 2008.

[4] Wang, S., Zhou, W. & Jiang, C. A survey of word embed-
dings based on deep learning. Computing 102, 717-740,
2020

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
Estimation of Word Representations in Vector Space”,
Proceedings of the International Conference on Learning
Representations (ICLR 2013), Scottsdale, 2013,

[6] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and
their compositionality” Advances in Neural Information
Processing Systems 26 (NIPS 2013), Lake Tahoe, 2013,
pp.3111-3119

[7] Pennington J, Socher R, Manning CD, “Glove: global vec-
tors for word representation.”, In Empirical methods in
natural language processing (EMNLP), pp 1532-1543,
2014

[8] Wang Ling, Chris Dyer, Alan W. Black, and Isabel

Trancoso. 2015. Two/too simple adaptations of Word2Vec
for syntax problems. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pages 1299— 1304, Denver, Colorado. Association for
Computational Linguistics.

[9] Manual Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith, “Retrofitting
word vectors to semantic lexicons.” In Proceedings of the
2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1606—1615, 2015

[10] Barkha Bansal, Sangeet Srivastava, “Sentiment classifi-
cation of online consumer reviews using word vector rep-
resentations”, Procedia Computer Science, Volume 132,
2018

[11] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z.
Solan, G. Wolfman, and E. Ruppin, “Placing search in
context: The concept revisited”, ACM Transaction on In-
formation Systems, Volume 20, Issue 1, 2002, pp.116—131

[12] E. Bruni, N. K. Tran, and M. Baroni, “Multimodal dis-
tributional semantics” Journal of Artificial Intelligence
Research, Volume 49, Issue 1, 2014, pp.1-47

[13]F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Eval-
uating semantic models with (genuine) similarity estima-
tion”, Computational Linguistics, Volume 41, Issue 4,
2015, pp.665-695

[14] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method for
semi-supervised learning. In Proceedings of the 48th An-
nual Meeting of the Association for Computational Lin-
guistics, ACL *10. Association for Computational Linguis-
tics.

[15] Harris, Z. (1954). Distributional structure. Word, 10(23):
146-162.

[16] Acharya, Anish & Goel, Rahul & Metallinou, Angeliki &
Dhillon, Inderjit. (2019). Online Embedding Compression
for Text Classification using Low-Rank Matrix Factoriza-
tion.

[17] Shu, R., and Nakayama, H. 2017. Compressing word em-
beddings via deep compositional code learning. arXiv pre-
print arXiv:1711.01068.

[18] Joulin, A.; Grave, E.; Bojanowski, P.; Douze, M.; Jegou,
H. and Mikolov, T. 2016. Fasttext. zip: Compressing text
classification models. arXiv preprint arXiv:1612.03651.

[19] Raunak, V. 2017. Effective dimensionality reduction for
word embeddings. arXiv preprint arXiv:1708.03629.

- 1017 -

