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요 약
유사도는 두 객체의 비슷한 정도를 실수로 나타낸 것이며 반대 개념인 다른 정도를 나타내는 것을

거리라 한다. 실세계에서 정확히 같은 것은 존재하기 힘들기 때문에 많은 응용 분야에서 유사도나

거리를 이용한다. 거리 중 대표적인 것으로 유클리드 공간에서 두 점 사이의 직선거리이다. 이 거리

를 유클리드 거리라고 한다. 코사인 유사도는 벡터 공간에서 두 벡터 사이각의 코사인 값이다. 이외

에도 용도에 따라 다양한 거리 또는 유사도가 연구되고 있다. 수학적으로 유사도는 이변수 함수로

나타낸다. 앞선 연구에서 민코프스키는 맨하탄 거리, 유클리드 거리 등을 매개변수 를 이용하여 하

나의 식으로 통합하였다. 이러한 유사도 통합은 유사도에 대한 새로운 통찰력을 제공하고 또 다른

응용을 제공한다. 본 논문은 기존 유사도의 의미를 개관하고 추가적인 매개변수를 도입하여 민코프

스키 거리와 코사인 유사도를 통합한 식을 제시한다.

1. 서론

어떤 대상 간 대소 여부 혹은 정확한 일치 여부

를 판단하는 비교 연산은 사람보다 컴퓨터가 빠르고

정확하게 수행한다. 그러나 실세계의 많은 문제는

어제 본 사람이 지금 보고 있는 사람과 같은 사람인

가를 판단해야 하는 것처럼 비슷한 정도를 판단해야

한다. 그리고 사람은 실생활에서 비슷한 정도를 큰

노력 없이 계속해서 판단하고 있다. 컴퓨터가 이러

한 판단을 수행하기 위해서 유사도(Similarity)를 구

하는 연산을 한다. 유사도의 반대 개념인 다른 정도

는 거리(Distance)라고 불리는 개념을 이용한다[1,2].

이런 유사성 또는 비유사성을 측정하는 연산을 할

때 컴퓨터는 단순 비교 연산보다 많은 비용이 소모

한다.

유사도는 얼굴이나 인식이나 표정 인식을 통한

감정 인식과 같은 형상 인식, 단백질의 유사성 파

악을 통한 신약 개발 등 실세계의 많은 문제를 해결

하기 위해 이용되고 있다[3-6]. 2,000년 이전 유클리

드 거리부터 시작해서 현대의 코사인 유사도[7], 자
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카드 유사도[8], 민코프스키 거리[9] 등 많은 유사도

가 연구되어 오고 있다. 이런 유사도들은 비슷한 형

태로 묶여지며 비슷한 유사도는 민코프스키거리와

같이 매개변수를 이용하여 통합된다[10]. 유사도 통

합을 통하여 새로운 통찰력과 응용을 제공한다. 본

논문은 코사인 유사도를 거리 개념으로 변경한 후

민코프스키 거리와 통합한 거리를 제시한다.

본 논문은 제2장에서 거리 및 유사도에 대하여

개관한다. 제3장에서는 코사인 유사도와 동일한 특

성을 가지는 거리를 제시한다. 제4장에서는 점의 호

거리라는 거리를 제시하고 유클리드 거리와 관계를

밝힌다. 제5장에서 코사인 유사도와 민코프스키 거

리를 통합하는 거리를 제시한다. 제6장은 본 연구에

대한 결론을 짓는다.

2. 거리/유사도 개관

거리는 두 개의 서로 다른 대상이 얼마나 떨어져

있는지를 나타내는 실수 값이다. 거리는 거리 함수

를 이용하여 계산된다. 거리 함수의 정의역은 거리

를 측정하고자 하는 대상 집합의 카티션 곱이며 공

역은 실수이다[11]. 거리 함수는 아래와 같은 조건을

가져야 한다.
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(그림 1) 벡터의 호 거리

는 집합이다.

거리 함수    × →ℝ일 때 ∈ 이다.

조건   ≥ 조건    이면   이다조건    조건   ≤    

조건 1은 거리가 음의 수가 나올 수 없다는 조건

이다. 거리는 떨어져 있는 정도라는 개념이므로 음

의 값이 나올 수가 없다. 조건 2는 거리가 이면 비

교 대상이 되었던 두 대상은 같은 것이어야 한다는

것이다. 이 또한 우리가 일반적으로 생각하는 거리

라는 개념과 일치한다. 조건 3은 에서 로의 거리

와 에서 로의 거리는 같다는 것이다. 조건 4는

다른 곳으로 돌아가는 거리가 더 짧은 것은 존재하

지 않는다는 것이다. 조건 3, 4번 역시 우리가 일반

적으로 인식하는 거리와 일치하는 개념이다. 쉽게

생각할 수 있는 거리는 유클리드 공간에서 두 점 사

이의 직선거리이며 이것을 유클리드 거리라고 한다.

유클리드 거리는 점의 각 성분 차이를 제곱하여 합

한 후 제곱근을 하여 계산하며 조건 1부터 조건 4까

지 만족함을 수학적으로 쉽게 증명 가능하다[12].

거리의 반대 개념으로 유사도가 있다. 유사도는

두 대상이 얼마나 비슷한지를 나타내는 수치를 계산

하는 함수를 말한다. 유사도 함수의 정의역은 대상

집합의 카티션 곱이며 공역은 실수이다[11]. 거리와

반대로 유사도는 값이 클수록 두 대상은 가까이 있

다. 대부분의 유사도 함수는 두 대상이 같을 때 유

사도 값이 이 된다. 또한 거리와 유사도는 간단한

식을 통하여 쉽게 서로 변환된다. 많은 분야에서 이

용되고 있는 유사도는 두 벡터 사이각의 코사인 값

을 취한 코사인 유사도이다. 두 벡터가 같은 방향을

가리킬 때 사이각은 라디안이며 코사인 값은 이

고 점점 다른 방향을 가리킬 때 사이각은 점점 커지

며 코사인 값은 점점 작아져서 사이각이 라디안일

때  까지 된다. 즉 코사인 유사도는 두 벡터가 동

일한 방향일 때 완전히 동일하다는 의미에서 의

값을 수직일 때는 같지 않다는 의미에서 을 서로

완전히 반대 방향일 때는  을 값을 가진다.

3. 코사인 유사도의 특징을 가지는 거리

코사인 유사도는 두 벡터 사이각의 코사인 값이

다. 벡터 공간에서 벡터의 스칼라적을 두 벡터 크기

의 곱으로 나누어준 것으로 계산한다[12].

벡터의 길이는 코사인 유사도에 영향을 주지 않

으며 방향만을 영향을 미친다. 코사인 유사도를 반

대 개념인 거리로 정의하기 위하여 코사인 유사도와

동일하게 벡터의 길이가 거리에 영향이 미치지 않도

록 단위 벡터로 변환하겠다. 그러면 단위 벡터는 단

위원에 위치하며 단위원에서 두 벡터를 잇는 짧은

호의 거리를 ‘벡터의 호 거리’라 하겠다. 벡터의 호

거리는 코사인 유사도와 동일하게 벡터의 방향에만

영향을 받는 거리이며 라디안 각이므로 쉽게 코사인

유사도로 변환이 가능한 값이다. 두 벡터  의 단

위 벡터를  라고 할 때 호의 길이는 식(1)과 같

다. (그림 1)을 보면 두 단위 벡터와 원점을 잇는 이

등변 삼각형을 이용하게 식(1)이 유도된다.

  sin 

  
 (1)

여기서 는 유클리드 거리이다.

코사인 유사도를 거리로 변환하는 경우 유클리드

거리와 삼각함수로 유도됨을 확인하였다.

4. 유클리드 거리와 호 거리

좌표 공간에서 두 점을 지나는 반지름이 인 원

의 호 거리를 ‘점의 호 거리’라 정의하겠다. 두 점

 에 대한 점의 호 거리는 식(2)와 같다. 식(1)과

유사한 방식으로 식(2)도 두 점과 반지름이 인 원

의 중심을 잇는 이등변 삼각형을 이용하여 식을 유

도된다. 단, 원의 지름 이 두 점의 거리보다 짧으

면 원이 두 점을 지나지 못한다. 이 경우 거리를 무

한대로 정의하였다.

 











 

 
   ≤ 

∞    

(2)

여기서 는 유클리드 거리이다.
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거리    

점의 호 거리 ∞   

벡터의 호 거리 

코사인 유사도cos 
  






맨하탄 거리 ∞   

유클리드 거리 ∞   

체비쇼프 거리 ∞ ∞  

민코프스키 거리 ∞ ∞  

<표 1> 매개 변수에 따른 점의 호 거리가 나타내는 거리

식(2)에서 반지름인 이 무한대로 갈 때를 생각

해보자. 를 극한을 취하면 식(3)에서 보듯이 

는 유클리드 거리가 된다. 이 무한대로 가는 극한

식으로 쓴 후 


을 로 치환하였다. 이 무한대로

갈 대 


은 으로 수렴하므로 가 으로 수렴하는

식으로 다시 썼다. 분수식에서 으로 수렴할 때 분

자와 분모를 미분한 식도 동일하다는 로피탈의 정리

를 미분한 후 식을 정리하면 유클리드 거리가 된다.

따라서 값을 매개변수로 할 경우 점의 호 거리는

유클리드 거리와 통합된다.

lim
→∞

 lim
→∞

 

 


  


 

 를로치환

lim
→

 lim
→


sin  

 lim
→
′
sin  ′

 lim
→


 

 

  

(3)

또한 유클리드 거리( )를 매개변수 에 따라 맨하

타, 유클리드 거리 등을 표현하는 민코프스키 거리






  



  
 로 치환할 경우 점의 호 거리와 민

코프스키 거리와 점의 호 거리가 통합이 된다.

5. 유사도 통합

민코프스키 거리는 매개변수 에 따라서 인 경

우 맨하튼 거리, 인 경우 유클리드 거리, 무한대인

경우 체비쇼프 거리가 된다[9]. 또한 점의 호 거리는

반지름을 로 하고 벡터를 단위 벡터로 변환할 경

우 제3장에 정의한 벡터의 호 거리가 되며 벡터의

호 거리는 코사인 유사도와 같은 특성을 가지는 거

리임을 확인했다. 따라서 제4장에서 정의한 점의 호

거리에 매개변수를 적절히 취하였을 경우 코사인 유

사도와 민코프스키 거리가 통합이 된다.

 










  


  ≥ 

∞   

여기서   




  



  


(4)

식(4)는 매개변수    를 적용하여 매개변수에

따라 6가지의 거리를 나타내는 식이다.<표 1>은 각

매개변수 값에 따른 점의 호 거리가 나타내는 거리

를 보여준다.

통합된 식에서 값을 조정함에 따라 단위원상의

호의 거리가 되거나 직선거리가 된다. 값은 민코프

스키 거리에서 사용된 방식과 동일하게 사용된다.

 값은 두 벡터의 길이가 거리에 영향을 주는 정

도를 조정된다.  값이 이면 벡터의 길이가 그대

로 영향을 주며 벡터의 길이 역수를 적용하면 벡터

의 길이 영향이 없어진다. 응용할 할 때 벡터마다

길이의 영향을 다르게 주는 거리를 필요하면  값

을 조정한다.

6. 결론

코사인 유사도를 단위 벡터가 단위원에서 호를

지나는 거리로 변환하여 코사인 유사도처럼 벡터의

크기에 영향을 받지 않고 방향만 영향을 받는 벡터

의 호 거리를 제시하였다. 두 점을 지나는 반지름이

인 원의 호 거리를 점의 호 거리로 정의하고 이

무한대로 갈 때 점의 호 거리는 유클리드 거리임을

보였다. 유클리드 거리를 민코프스키 거리로 치환하
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고 매개변수 2개를 추가하여 벡터의 호 거리와 점의

호 거리를 통합하였다. 매개변수    를 이용하

여 통합된 점의 호 거리가 매개변수에 따라 코사인

유사도와 민코프스키 거리를 나타냄을 보였다.

제시된 점의 호 거리는 <표 1>에서 제시된 매개

변수 이외의 값을 취하여 좀 더 다양한 거리 함수가

만들어진다. 이렇게 만들어진 거리 함수는 데이터베

이스 분야에서 유사도 질의에서 응용된다. 그리고

인공지능의 패턴인식 분야에서 최근접이웃 탐색 등

에서 응용된다. 이후 연구에서 매개 변수 값이 <표

1>에 제시된 이외의 값을 적용한 유사도가 실제 사

례에서 어떤 의미를 가지고 기여 가능한 응용이 존

재하는지 찾아보겠다. 그리고 거리가 아닌 유사도

형태로의 통합식을 추후 연구를 통하여 제시하겠다.
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