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요       약 

랜덤워크 기반 노드 랭킹 방식 중 하나인 RWR(Random Walk with Restart) 기법은 희소행렬 벡터 

곱셈 연산과 벡터 간의 합 연산을 반복적으로 수행하며, RWR 의 수행 시간은 희소행렬 벡터 곱셈 

연산 방법에 큰 영향을 받는다. 본 논문에서는 CSR5(Compressed Sparse Row 5) 기반 희소행렬 벡터 

곱셈 방식과 CSR-vector 기반 희소행렬 곱셈 방식을 채택한 GPU 기반 RWR 기법 간의 비교 실험을 

수행한다. 실험을 통해 데이터 셋의 특징에 따른 RWR 의 성능 차이를 분석하고, 적합한 희소행렬 

벡터 곱셈 방안 선택에 관한 가이드라인을 제안한다. 
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1. 서론 

최근, 클릭 또는 구매를 비롯한 다양한 유저 행동 

정보의 양이 빠르게 늘어남에 따라, 추천 시스템의 

추천 결과 도출에 소요되는 시간 또한 크게 증가하고 

있다. 이러한 이유로 GPU(Graphics Processing Unit)

를 기반으로 하는 연산 기법에 관한 연구들이 활발하

게 수행되고 있다. GPU 는 단순한 연산의 반복으로 

이루어진 방대한 양의 작업을 병렬적으로 처리하기 

때문에, 연산에 소요되는 시간을 크게 줄일 수 있다. 

랜덤워크 기반 노드 랭킹 방법인 RWR(Random Walk 

with Restart)은 널리 사용되는 그래프 기반 추천 기

법 중 하나이다[1]. RWR 은 희소행렬 벡터 곱셈

(Sparse Matrix-Vector Multiplication) 연산과 두 

벡터 간의 합 연산을 반복적으로 수행한다. 하지만 

일반적으로 희소행렬 상에서 불규칙한 데이터 접근 

패턴은 GPU 를 통한 RWR 성능 향상을 가로막는 요인

이 된다. 이러한 문제를 해결하기 위해 희소행렬 벡

터 곱셈에 대한 여러 기법들이 연구되어 왔다. 그 중, 

CSR(Compressed Sparse Row) 기반 행렬 곱셈 방식인 

CSR-vector 기법[2]과, CSR5(Compressed Sparse Row 

5)[3] 기반 희소행렬 곱셈 기법은 GPU 에서 희소행렬

을 효과적으로 처리하기 위해 제안된 대표적인 방법

이다. 

 본 논문에서는 CSR-vector 및 CSR5 기반 희소행렬 

곱셈 기법을 사용하여 RWR 을 가속화하고, 이들에 대

한 성능 분석을 통하여 RWR 에 적합한 희소행렬 곱셈 

방식 선택에 대한 통찰을 제공한다. 

2. 희소행렬 곱셈 방안 

CSR 포맷은 가장 유명한 희소행렬 표현 방법 중 하

나이다[2]. CSR 포맷에 따라 행렬은 열의 인덱스를 

저장하는 배열, 0 이 아닌 값들을 저장하는 배열, 각 

행의 시작 주소를 나타내는 포인터 배열을 합쳐 총 

세 가지의 정보로 표현된다. 워프(Warp)란 스트리밍 

멀티프로세서(Streaming Multiprocessors)의 스레드 

스케줄링 단위이다. CSR-vector 기법은 각 워프를 

CSR 포맷으로 표현된 그래프 데이터의 각 행 마다 할

당하여 희소행렬 곱셈 연산을 수행한다. 

CSR-vector 기법은 연속적으로 메모리에 저장된 각 

열의 인덱스 배열과 0 이 아닌 값을 저장하는 배열을 

워프 내의 스레드가 동시에 접근하게 만듦으로써, 높

은 메모리 처리량(throughput)을 얻을 수 있다는 장

점이 있다[2]. 또한, 희소행렬 곱셈을 위한 별도의 

포맷 변환이 필요하지 않다. 단, 행렬의 각 행당 0

이 아닌 값의 수 차이가 큰 경우, 워크로드 밸런싱

(Workload Balancing)의 수준이 낮아져 연산 수행 성

능이 제한될 수 있다. 

CSR5 포맷은 희소행렬을 일정 크기의 타일로 분할

한다. CSR 의 세 가지 정보와 함께 각 타일의 시작 
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주소 및 희소행렬 곱셈 연산에 필요한 두 가지 정보

를 추가적으로 담고 있다. 추가적인 정보 외에 기존 

CSR 포맷의 열의 인덱스와 0 이 아닌 값을 저장하는 

배열을 타일 기준으로 전치하여 저장한다. 

곱셈 연산 시에는 각 워프를 타일 마다 할당하는데, 

각 워프는 동일한 크기의 타일을 처리하기 때문에 워

크로드 밸런싱 효과를 얻을 수 있다. 또한, 가장 흔

히 사용되는 CSR 포맷을 기반으로 한다는 점에서, 희

소행렬의 포맷을 크게 변형시키는 기타 희소행렬 벡

터 곱셈 방식에 비하여 데이터 변형으로 인한 추가 

비용이 적다는 장점이 있다. 하지만 타일링 및 곱셈

을 위한 추가 데이터가 필요하며, 전치로 인한 오버

헤드가 존재한다[4]. 

3. 성능 평가 

3.1 실험 환경 

본 논문에서는 추천시스템에서 자주 사용되는 세 

가지의 데이터 셋을 사용하여 실험을 수행하였다. 표 

1 은 사용한 데이터 집합의 통계를 보여준다.  

표 1. 데이터 집합의 통계 

데이터 평점 유저 아이템 
유저 당 

평점 평균 
희소도 

ML10M 10,000,054 71,567 10,681 143 98.7% 

Amazon 22,507,155 8,026,324 2,330,066 2.8 99.9% 

Netflix 100,480,507 480,189 17,770 209 98.8% 

실험은 Ubuntu 18.04 운영체제에서 수행하였으며, 

CPU 는 Intel core i9-9900k, GPU 는 Nvidia Geforce 

RTX 2070 을 사용하였다. 연산장치 상세 정보는 표 2

에 나와있으며, 개방형 범용 컴퓨팅 프레임워크인 

OpenCL 1.2 를 사용하였다. 

표 2. 연산장치 정보 
튜링(Turing)플랫폼 

중앙처리장치 인텔 옥타 코어 CPU (16 스레드), 16GB 메모리 

그래픽처리장치 
RTX 2070: 36 SMs, 8GB 디바이스 메모리, 448 GB/s 메

모리 대역폭, SM 당: 16 쿠다(CUDA) 코어 , 2K 스레드 

3.2 실험 결과 

실행 시간 측정 실험 비교 대상은 GPU CSR5 RWR, 

GPU CSR-vector RWR, CPU CSR RWR 총 세 가지 버전이

다. CPU CSR RWR 을 베이스라인으로 설정하였으며, 

단일 스레드로 실행된다. 10 명의 유저에 대하여 특

정 유저를 위한 RWR 스코어 벡터를 구할 때 소요되는 

평균 시간을 밀리초(millisecond) 단위로 측정하였고, 

결과를 RWR 총 소요시간, 희소행렬 벡터 곱셈 시간

(CSR5 의 경우 포맷 시간 포함), 포맷 변환 시간으로 

구분하여 표 3 에 기록하였다. 

실험 결과를 보면, GPU RWR(CSR5, CSR-vector) 버

전의 속도는 CPU RWR 에 비하여 약 4~47 배 더 빠르다. 

GPU CSR5 RWR 의 경우 Netflix, Amazon 데이터 셋

에서 가장 좋은 성능을 보이고, GPU CSR-vector RWR

의 경우 작은 데이터 셋인 ML 10M(Movielens 10M)에

서 우수한 성능을 보인다. 작은 데이터 셋에서 GPU 

CSR5 RWR 의 성능이 좋지 못한 이유는 CSR 에서 CSR5

로의 포맷 변환 시간이 전체 실행 시간 중 차지하는 

비중이 크기 때문이다. 

유저 당 평균 평점 수가 적은 Amazon 데이터 셋에

서는 CSR5 를 사용한 RWR 의 성능 개선 폭이 CSR-

vector RWR 의 개선 폭에 비해 크다는 것을 알 수 있

다. 타일 구조에 의해 워크로드 밸런싱이 상대적으로 

잘 이뤄지는 CSR5 방식에 비해서, CSR-vector 방식에

서는 0 이 아닌 값을 워프 내의 스레드 수(=32)보다 

적게 갖는 행이 많을수록 성능이 쉽게 저하될 수 있

기 때문이다. 

표 3. 실행 시간 비교 (밀리초) 

데이터 버전 총 시간 곱셈 포맷 변환 

ML10M 

GPU CSR5 19.57(42.7x) 14.85(27.6x) 1.06 

GPU CSR-

vector 
19.46(42.9x) 14.74(27.8x) - 

CPU CSR 834.6(1x) 409.84(1x) - 

Amazon 

GPU CSR5 396.58(10.3x) 133.25(24.7x) 7.3 

GPU CSR-

vector 
912.89(4.5x) 649.55(5.1x) - 

CPU CSR 4,064.43(1x) 3,285.43(1x) - 

Netflix 

GPU CSR5 240.88(47x) 197.47(27.1x) 8.81 

GPU CSR-

vector 
244.61(46x) 210(26.6x) - 

CPU CSR 11,351.54(1x) 5,596.3(1x) - 

4. 결론 

본 논문에서는 대표적인 그래프 기반 추천 방식인 

RWR 기법에 대한 GPU 기반 희소행렬 벡터 곱셈 방안

들 간 성능을 비교하였다. 일반적으로 CSR-vector 방

식의 단점을 보완한 CSR5 기반 희소행렬 곱셈이 더 

우수한 것으로 알려져 있다. 하지만 (1) 크기가 상대

적으로 작은 데이터 셋에서는 별도의 포맷 변환 과정

이 요구되지 않은 CSR-vector 방식이 더 좋은 성능을 

보였다. 반면 (2)데이터의 희소도가 상대적으로 더 

큰 Amazon 데이터 셋에서는 CSR5 방식이 더 우수한 

성능을 보인 것을 알 수 있었다. 따라서 RWR 을 가속

화할 때 그래프 데이터의 특성을 분석하여 CSR5, 

CSR-vector 방식 중 적합한 방식을 선택해야 한다. 
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