

Stack Trace기반

Bug report 우선순위 자동 추천 접근 방안

이정훈*, 김태영*, 최지원*, 김순태*, 류덕산*

*전북대학교 소프트웨어공학과
jhmake4419@gmail.com, rlaxodud1200@jbnu.ac.kr, jiwon.choi@jbnu.ac.kr, stkim@jbnu.ac.kr, dsryu99@gmail.com

An Automatic Approach for the Recommendation of Bug

Report Priority Based on the Stack Trace

JeongHoon Lee*, Taeyoung kim*, Jiwon Choi*,SunTae Kim*, Duksan Ryu*

*Dept. of Software Engineering, Jeon-Buk National University

요 약

소프트웨어 개발 환경이 빠르게 변화함에 따라 시스템의 복잡성이 증가하고 있다. 이에 따라

크고 작은 소프트웨어의 버그를 피할 수 없게 되며 이를 효율적으로 처리하기 위해 Bug report를 사

용한다. 하지만, Bug report에서 개발자가 해당 Bug report의 우선순위를 결정하는 과정은 노력과 비용

그리고 시간을 많이 소모하게 만든다. 따라서, 본 논문에서는 Bug report 내의 Stack trace 를 기반으로

Bug 의 우선순위를 자동적으로 추천하는 기법을 제안한다. 이를 위해 본 연구에서는 첫 번째로 Bug

report 로부터 Stack trace 를 추출하였으며 Stack trace 의 3 가지 요소(Exception, Reason 그리고 Stack

frame)에 TF-IDF, Word2Vec 그리고 Stack overflow를 사용하여 특징 벡터를 정의하였다. 그리고 Bug의

우선순위 추천 모델을 생성하기 위해 4 가지의 Classification 알고리즘을(Random Forest, Decision Tree,

XGBoost, SVM)을 적용하였다. 평가에서는 266,292개의 JDK library의 Bug report 데이터를 수집하였고

그중 Stack trace를 가진 Bug report로부터 68%의 정확도를 산출하였다.

1. 서론

최근 급변하는 소프트웨어 분야 속에서 소프트웨어

개발환경 또한 빠르게 변화하고 있다. 이에 따라

소프트웨어의 규모와 복잡성이 증가하고 있으며

소프트웨어의 크고 작은 버그를 피할 수 없게 되었다.

이러한 버그들을 다루기 위해 개발자들은 Bug tracking

system(Windows Error Report tool1, Mozilla crash reporting

system 2 , Ubuntu’s Apport crash reporting tool 3 , etc.)

으로부터 사용자들에게 버그리포트를 받고 해당 Bug

report 의 내용, 개발자 본인의 경험 그리고 과거의

Bug report들을 확인하여 버그의 우선순위를 결정한다.

하지만, 이러한 과정은 개발자의 노력과 비용 그리고

시간을 많이 소모하게 만든다.

사용자들은 버그 리포트를 제출 시 버그에 대한

텍스트 형식의 설명과 Stack trace 등을 포함한 다양한

1 http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx

2 http://crash-stats.mozilla.com

정보를 기입한다. 이 중 Stack trace 는 SW 프로젝트의

충돌 또는 결함이 발생했을 때 Memory stack 안에

생성되는 Function Call 들의 순서 집합으로써 다음

그림 1)과 같이 Exception, Reason 그리고 Stack

frame으로 구성된다.

그림 1) Stack trace의 구조

이러한 3 가지 정보를 가지는 Stack trace 는 개발자가

해당 버그의 우선순위를 판단하는데 중요한 역할을

한다. 먼저, Stack trace 의 Exception 으로부터 개발자는

3 https://wiki.ubuntu.com/Apport

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 866 -

시스템으로부터 어떠한 에러가 발생했는지 확인하며

Reason 으로부터 해당 Exception 이 발생되는 이유를

파악하게 된다. 이러한 내용을 기반으로 Stack frame에

있는 Function call 들로부터 버그가 발생할 수 있는

파일들을 확인 후 각 파일을 들어가서 버그를

수정하게 된다.

이러한 Stack trace 를 활용하여 버그리포트의

우선순위를 예측하는 기존의 연구들이 존재한다.

일반적인 버그의 우선순위 추천 연구들은 자연어

처리 방식을 Bug report 의 Stack trace 를 제외한

Description 의 정보를 적용하여 버그의 우선순위를

추천한다[1]. 하지만 이러한 방식들은 Bug 에 대한

시스템 적인 내용을 충분히 가지고 있지 않고 있으며

Stack trace 를 활용한 연구들의 경우 Stack trace 에서

Stack frame 만의 정보를 TF-IDF 를 사용하여 Bug

우선순위를 추천해주고 있다[2][3]. 하지만 이러한

방식은 Stack trace 에 존재하는 다른 요소들(Exception

그리고 Reason)을 전혀 반영하고 있지 않기 때문에

버그 우선순위를 추천하는데 중요한 정보를 놓칠

수도 있다.

따라서, 본 연구는 이러한 문제에 접근하기 위해

Stack trace 를 기반으로 Bug report 우선순위 추천

방안에 대해 제안한다. 첫 번째로, Bug report 들로부터

Stack trace 들을 추출하였으며, Stack trace 의 3 가지

요소(Exception, Reason, Stack frame)로부터 특징벡터를

생성하기 위해 Word2vec, TF-IDF 그리고 Stack

Overflow 의 글에 대한 정보를 활용한다. 생성된

특징벡터를 기반으로 여러 Classification 머신 러닝

알고리즘들을 적용하여 버그 심각도 추천 모델을

생성한다. 본 연구의 접근방안의 적절성과

버그리포트의 우선순위 예측 모델의 성능을 평가하기

위해 평가단계에서 2 가지 Research question 을

선정하였으며 실험을 통해 68%의 정확도를

도출하였다.

제안하는 기법의 설명을 위해 본 연구는 다음과 같이

구성된다. 2장에서는 Stack trace를 사용한 버그리포트

우선순위 추천에 관한 기존연구들을 분석한다.

3 장에서는 Stack trace 기반의 버그리포트 우선순위

추천 방안에 대해 제안한다. 4 장에서는 제안하는

접근방법의 적절성과 모델의 성능에 관해 기술하였고

5장에서 결론을 맺는다.

2. 접근 방법

이 장에서는 Stack trace 기반의 버그 우선순위

예측을 위한 접근방안에 대해 소개한다. 그림

2)에서와 같이 우리의 접근방안은 크게 3 가지 단계로

구성된다. 첫 번째로 Bug report 의 Description 에서

Stack trace 들에 대해 추출하였으며 두 번째에서는

추출된 Stack trace 를 기반으로 Feature vector 들을

생성한다. 마지막으로 생성된 Feature vector 로부터

Classification 모델을 적용하여 Bug 우선순위 추천

모델을 생성한다.

2.1. Extracting Stack Trace

이 단계의 주요 목표는 Stack trace 기반의 특징벡터를

생성하기 위해 Bug report 들로부터 Stack trace 들을

추출하는 것이다. 다음의 그림 3은 Bug report의

구조를 보여주고 있다.

그림 3) 버그리포트의 구성

그림 2) Proposed approach

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 867 -

버그 리포트는 크게 Meta information 과 description

2 가지 구조로 구성되어 있다. 첫 번째로, Meta

information 에서는 해당 버그리포트의 제출일, 상태,

개발 환경 등의 meta 정보들을 보여주고 있으며,

description에서는 해당 버그에 대한 설명, Stack trace의

내용들 담고 있다. 즉, 우리는 Bug report 의

description 을 기반으로 하여 Stack trace 를

추출한다[4][5].

3.2. Creating Feature Vector

이 단계에서는 다음의 그림 4)와 같이 추출된

Stack trace를 기반으로Word2Vec, TF-IDF 그리고 Stack

overflow 를 사용하여 3 가지 유형의 특징벡터를

생성한다. 그 다음 각 유형의 특징벡터를 결합하여

Bug 우선순위 추천 모델을 생성하기 위한 특징벡터를

구성한다.

그림 4) Creating Feature Vector

3.2.1. Word2Vec Based Feature Vector

Exception 과 Reason 에 대한 의미적 정보를 특징화

하기 위하여 우리는 Word2Vec[6]을 적용한다.

Word2Vec 은 단어들의 의미적 차이를 구별하고

컴퓨터가 이해하도록 해주는 대표적인 Word

Embedding 기법이다. 우리는 각 Bug report 의 Stack

trace 에 존재하는 모든 Exception 과 Reason 에 대해

각각의 Word2Vec Model을 구성하고 이를 기반으로 각

Exception과 Reason을 벡터로 변환한다.

3.2.2. TF-IDF Based Feature Vector

TF-IDF[7] 기반의 특징벡터는 Stack frame 의 function

call들을 기반으로 생성된다. TF-IDF는 특정 문서내의

단어가 여러 문서에 얼마나 자주 등장하는지를

값으로 변환하는 통계적 기법으로 그 값을 통해 해당

단어가 문서내에 중요한 내용임을 가리키는 지표가

된다. 즉 우리는 Stack frame 에서 중요한 function

call 들의 내용들에 대한 값들을 표현하기 위해

Sabor[2]의 연구에서 사용된 TF-IDF 기반의 Stack

frame 특징벡터를 사용한다.

3.2.3. Stack Overflow based Feature Vector

 Stack overflow 기반의 특징 벡터를 생성하기 위해,

우리는 Stack trace 의 Exception 을 사용하여 Stack

overflow API[8]를 통해 검색된 글의 수와 각 글의

Comment 수를 얻으며 이를 평균값을 내어

특징벡터로 생성한다. Stack Overflow 에서 Bug

report 에서 발생한 Exception 을 사용하는 이유는 많은

개발자들이 버그를 수정할 때에 Stack overflow 의

정보를 많이 활용하며 이때, 해당 Exception 이 많이

검색되는 경우에는 쉽게 버그를 해결할 수 있어

Bug의 우선순위가 낮아질 수 있기 때문이다.

마지막으로 3 가지 유형에 따라 생성된 특징벡터는

하나의 특징벡터로 결합되어 지며 Number of Post,

Number of comment 에 대해서는 min-max

normalization을 적용하였다. 마지막에 Bug 우선순위에

대한 Label이 끝에 붙여진다.

3.3. Creating Train Model

이전 단계에서 생성된 특징 벡터들은 Bug 의

우선순위를 추천해주기 위한 모델을 생성하기 위해

사용된다. 그리고 생성된 모델은 새로 들어온 Bug

report 에 대해서 Bug 의 우선순위를 추천해준다. Bug

우선순위 추천 모델은 Random Forest, Decision Tree,

XGBoost 그리고 SVM 과 같은

Classification 알고리즘을 적용하여 생성하며 각

알고리즘은 Skit-learn[9]을 통해서 적용하였다.

4. 평가

본 연구의 접근방안의 적절성과 버그리포트의

우선순위 예측 모델의 성능을 평가하기 위해

평가단계에서 다음의 2 가지 Research Question 을

선정하였다.

 RQ 1. : 정의한 특징 벡터가 버그리포트의

우선순위를 예측하기에 적절한가?

 RQ 2. : 얼마나 훈련된 모델이 버그리포트의

우선순위를 잘 추천하는가?

실험 데이터

평가를 수행하기 위해 우리는 우선 Oracle java Bug

Database 에 제출된 JDK(Java Development Kit) [10]

라이브러리의 Bug report 를 수집하였다. JDK 는 자바

언어 기반의 SW 를 개발하기 위해 사용되는

Library 이며 현재 까지도 유지보수를 잘 수행하고

있는 프로젝트이기 때문에 실험 데이터 셋으로

선정하였다. Table 1과 같이 우리는 총 266,926개의를

수집하였고 그 중 7,273 개의 Stack trace 가 포함된

버그리포트를 사용하였다.

Table 1) the number of bug report

 Total bug report
Bug report with

stack trace

Bug report 266,926 7,273

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 868 -

RQ. 1 정의한 특징 벡터가 버그리포트의

우선순위를 예측하기에 적절한가?

 첫 번째 질문에 답하기 위하여 scikit-learn 을

사용하여 다중 회귀 분석을 적용하였다. 이

질문에서의 목적은 우리가 정의한 특징벡터가

버그리포트의 우선순위 추천에 얼마나 영향력을 보기

위함이기 때문에 다음의 Table 2. 와 같이 TF-IDF 를

적용하기 전과 후로 구분하여 R-square 와 Adjust R-

square 값을 도출하였다.

TF-IDF 를 적용하였을 때는 0.974 와 0.920 의 값을

얻었으며 TF-IDF 를 미적용 한 경우에는 0.825 와

0.816 의 값을 얻었다. 이를 통해 TF-IDF 를 제외한

우리의 정의된 특징 벡터만으로도 모델을 잘

설명한다는 것을 보여주고 있으며 TF-IDF 를 적용 시

모델의 설명력이 더욱 올라감을 보여준다.

Table 2) 다중 회귀 분석 결과

RQ. 2 훈련된 모델이 버그리포트의 우선순위를 잘

예측하는가?

두 번째 질문은 우리의 훈련된 모델이 얼마나 잘

Bug의 우선순위를 추천해 주는지 알아보기 위함이다.

즉, 우리 모델의 성능을 평가하기 위해 우리는 Data

set 을 Training set 과 Validation set 그리고 Test set

3 가지로 나눈 후 모델에 대해 평가하였다. 또한,

Validation set과 Test set은 전체 Data set에서 무작위로

선출하였다. 다음의 Table 3. 은 4 개의 Classification

알고리즘을 적용하여 나온 성능의 결과를 보여주고

있다. 결과에서 우리의 모델은 평균적으로 68%의

정확도를 가지고 있으며 또한 Random forest 에서는

75%의 정확도를 가짐을 보여주고 있다.

 Precision Recall F-measure Accuracy

Random

Forest

0.712 0.562 0.604 0.75

Decision

Tree

0.554 0.540 0.548 0.71

SVM 0.494 0.502 0.488 0.65

XGBoost 0.454 0.408 0.406 0.62

Average 0.5535 0.503 0.5115 0.68

Table 3) 다중 분류 모델 적용 결과

5. 결론

본 연구는 개발자의 버그리포트 우선순위 결정 시

Stack trace 를 기반으로 우선순위를 예측, 추천하는

방안을 제안했다. 먼저, Word2Vec 과 TF-IDF 그리고

Stack overflow 를 활용하여 Stack trace 로부터

특징벡터를 생성한 후 Random Forest, Decision Tree,

SVM, XGBoost등의 Classification 알고리즘을 적용하여

모델을 생성하였다. 그 후, 우리의 생성된 모델과

특징벡터의 유의미함을 평가하기 위해 다중회귀와

모델의 성능 평가를 진행하였고 평균적으로 68%의

정확도를 얻어 내었다. 향후 연구로는 Stack Trace뿐만

아니라 버그리포트의 Meta information 의 내용들을

특징 벡터로 추가할 예정이며 Stack frame 안의

Function call 들의 순차적 특성을 RNN 에 적용하여

새로운 특징 벡터를 추가 정의하여 성능 향상을 할

예정이다.

Acknowledgments

이 성과는 정부(과학기술정보통신부)의 재원으로 한국

연구재단의 지원을 받아 수행된 연구임.

(NO.2020R1F1A1072039)

참고 문헌

[1]Lamkanfi, Ahmed, et al. "Comparing mining algorithms for

predicting the severity of a reported bug." 2011 15th European

Conference on Software Maintenance and Reengineering.

IEEE, 2011.

[2] Sabor, Korosh Koochekian, Mohammad Hamdaqa, and

Abdelwahab Hamou-Lhadj. "Automatic prediction of the

severity of bugs using stack traces and categorical features."

Information and Software Technology 123 (2020): 106205.

[3]Sabor, Korosh Koochekian, Mohammad Hamdaqa, and

Abdelwahab Hamou-Lhadj. "Automatic prediction of the

severity of bugs using stack traces." Proceedings of the 26th

Annual International Conference on Computer Science and

Software Engineering. 2016.

[4]Bettenburg, Nicolas, et al. "Extracting structural

information from bug reports." Proceedings of the 2008

international working conference on Mining software

repositories. 2008.

[5]https://github.com/kuyio/infozilla

[6]Goldberg, Yoav & Levy, Omer. (2014). word2vec

Explained: deriving Mikolov et al.'s negative-sampling word-

embedding method.

[7]Rajaraman, A., & Ullman, J. (2011). Data Mining. In

Mining of Massive Datasets (pp. 1-17). Cambridge:

Cambridge University Press.

doi:10.1017/CBO9781139058452.002

[8]https://api.stackexchange.com/

[9]https://scikit-learn.org/stable/

[10]https://www.oracle.com/java/technologies/java-se-

glance.html

 TF-IDF 적용 TF-IDF 미적용

R-squared 0.974 0.825

Adj.R-squared 0.920 0.816

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 869 -

