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요 약
본 논문에서는 3D 메시 정보, RGB-D 손 자세 및 2D/3D 손/세그먼트 마스크를 포함하여 인간의 손

과 관련된 다양한 컴퓨터 비전 작업에 사용할 수 있는 새로운 다중 모달 합성 벤치마크를 제안 하였다.

생성된 데이터셋은 기존의 대규모 데이터셋인 BigHand2.2M 데이터셋과 변형 가능한 3D 손 메시

(mesh) MANO 모델을 활용하여 다양한 손 포즈 변형을 다룬다. 첫째, 중복되는 손자세를 줄이기 위

해 전략적으로 샘플링하는 방법을 이용하고 3D 메시 모델을 샘플링된 손에 피팅한다. 3D 메시의 모양

및 시점 파라미터를 탐색하여 인간 손 이미지의 자연스러운 가변성을 처리한다. 마지막으로, 다중 모달

리티 데이터를 생성한다. 손 관절, 모양 및 관점의 데이터 공간을 기존 벤치마크의 데이터 공간과 비교

한다. 이 과정을 통해 제안된 벤치마크가 이전 작업의 차이를 메우고 있음을 보여주고, 또한 네트워크

훈련 과정에서 제안된 데이터를 사용하여 RGB 기반 손 포즈 추정 실험을 하여 생성된 데이터가 양질의

질과 양을 가짐을 보여준다. 제안된 데이터가 RGB 기반 3D 손 포즈 추정 및 시맨틱 손 세그멘테이션

과 같은 품질 좋은 큰 데이터셋이 부족하여 방해되었던 작업에 대한 발전을 가속화할 것으로 기대된다.

1. 서론

우리는 물건을 조작하는 것부터 다른 사람들과의

비언어적 의사 소통에 이르기까지 환경과의 상호 작

용의 주요 수단으로 손을 사용한다. 이러한 손 제스

처의 형태와 의미를 이해하는 것은 인간-컴퓨터 상

호 작용, 컴퓨터 그래픽, 가상 및 증강 현실과 같은

다양한 애플리케이션에 필수적이다. 손을 이해하는

작업은 2D 손 세그멘테이션 [1], RGB 이미지로부터

3D 손 포즈 추정 [3] 및 깊이 이미지로부터 3D 손

포즈 추정 [2]와 같은 것들이 있으며, 3D 메시 재구

성 [4] 및 손동작 인식 [5]에서도 손은 주요 물체로

인식되고 있다. 컴퓨터 비전 관점에서 손을 이해하는

데 있어 가장 중요한 과제 중 하나는 정답이 있는 많

은 양의 데이터에 액세스할 수 있는지 여부이다. 일

반적으로 비선형적 혹은 고차원 매핑 학습이 필요하

기 때문이다. 그러나 우리가 아는 한 대부분의 기존

데이터셋은 카메라 시점, 모양 및 손 자세 변형의 공

간에서 제한이 된다. 대규모 데이터셋을 얻는 데 있

어 많은 노동이 필요하기 때문에 이런 공간 제한이

생긴다. 본 논문에서는 손의 세 가지 주요 변형, 즉

모양, 관점 및 손 자세에 대해 보다 완전한 형태로

데이터를 모을 수 있는 데이터 수집 파이프라인을 제

안한다. 본 논문의 기여는 아래와 같이 요약할 수 있

다.
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• 보다 완벽한 멀티 모달 데이터셋을 체계적으로 생

성하기 위한 파이프라인 제안: 해당 파이프라인에서

는 변형 가능한 3D 손 메시 (mesh) 모델을 완벽하게

관절 공간이 있는 기존의 실제 깊이 벤치마크에 피팅

한다. 모델의 해당 파라미터를 변경하여 모양과 시점

을 생성한다. 마지막으로, 2D 프로젝션 방법을 사용

하여 3D 메시 모델에서 다중 모달리티 데이터가 생

성한다. 파이프라인은 Fig. 1에 나와 있다.

• 대규모 합성 데이터셋 제안 : 3D 메시 재구성

과 같은 컴퓨터 비전 작업에서 2D / 3D 포즈 추정-

커뮤니티에서 종종 완전한 데이터셋의 부족을 지적했

었다. 이 데이터셋을 공개적으로 액세스 할 수 있도

록 함으로써 간극을 메우고 여러 모달 연구를 장려하

고자 한다.

• 데이터셋 품질에 대한 분석 : 제안 된 데이터셋을

세 가지 주요 손 도메인 변형 (모양, 카메라 시점 및

손 자세) 측면에서 기존 데이터셋과 비교했다. 또한

데이터셋의 완성도를 실험적으로 보여 주고자 했다.

2. 본론

[2] 논문은 10명에 대한 총 496개의 가능한 최대 범

위의 손 자세 간의 변화 과정을 동영상 형태로 수집

했다.

Figure 1. 핸드 벤치마크 생성을 위해 제안 된 파이

프라인의 개략도. 먼저 BigHand2.2M 데이터베이스

에서 고유 한 관절을 선택한 다음 MANO 손 모델을

골격에 맞추고 마지막으로 RGB-D, 골격, 세그멘테이

션 마스크가 생성된다.

이러한 체계적인 데이터 수집 방법으로 얻어진 데

이터셋은 손 관절 공간에서 완전하다고 생각될 수 있

으나 데이터셋이 연속적인 동영상으로 수집되었기 때

문에 여러 중복된 자세가 캡처되었다. 모든 중복 관

절을 활용하는 것은 심층 신경망 훈련에 비효율적이

다. 따라서 우리는 총 957,032 개의 학습 데이터에서

관절 공간의 중복성을 줄인 다음 MANO 모델을 샘플

링 된 손 관절에 맞추는 방법을 활용하도록 동기 부

여되었다.

구별가능한 손 관절 선택. 21개 관절의 3D 좌표 값

x, y 및 z로 구성된 63 차원 원시 손 관절 벡터는 주

요한 세 손의 변형에 영향을 받는다. 즉 관점, 모양

및 손 자세 만 추출하기 위해 25 차원 각도 특징, 각

손가락에 대해 5개 각도를 추출 할 것을 제안한다.

K-평균 알고리즘은 이러한 각 특징 벡터 위에 적용

되었고 K=100,000의 클러스터 크기는 실험적으로 설

정되었으며, 32 개의 말단 관절 범위 사이에 496 연

속 전환을 포함하는 각 공간은 이 숫자로 충분히 커

버된다. 이 과정을 통해 K개의 관절

   ∈  이 고유한 손 관절로 선택되었다.

MANO [6] 모델 피팅. MANO 모델을 이전 단계에서

얻은 고유한 손 관절들에 피팅하는 단계이다. 각 고

유 손 관절 에 대한 MANO 모델의 모양

   ∈  , 카메라    ∈  및 관

절    ∈  파라미터를 다음 방정식을 해

결하여 구한다.

   argmin∣∣∣∣


여기서 f는 MANO 모델에서 나온 메시의 꼭지점을

손 관절로 매핑하는 함수이며, R은 메시의 삼각 면

을 부드럽게 해 주는 라플라시안 함수이다.

피팅된 손 모델의 다양한 모양 및 관점 파라미터. 더

욱 완성된 손 포즈 공간을 확보하고자 우리는 MANO

메시의 모양과 관점 파라미터를 조작해야 함을 제안

한다. 피팅된 손 메시는 x 및 y 축에 관한 각도로 구

성된 회전 행렬을 사용해 회전할 수 있고, 10개의

모양 파라미터를 조작해 메시 모양을 변경할 수도 있

다.

이기종 작업을 위한 데이터 생성. 관절, 모양 및 관점

공간을 비교적 완전에서 메시를 생성 한 뒤 해당 메

시를 사용하여 3D 손 관절 회귀 분석기 및 랜더링

엔진의 도움으로 다양한 형태의 데이터를 생성한다.

6 가지 형태(깊이맵, RGB맵, 2D 및 3D 손관절, 세그

멘테이션 마스크, 3차원 메시)의 결과 예가 Fig. 2에

표시되었다.

3. 실험

이 섹션에서는 제안된 데이터셋의 품질을 분석한

다. 먼저 PCA 프로젝션을 사용하여 관절 공간 측면

에서 데이터셋를 공개적으로 사용가능한 다른 데이터

(STB [7], RHD [3] 및 SH [8])과 비교한다. 둘째, 텍

스처 모델을 언급 된 데이터셋의 모델과 비교한다.

마지막으로 제안된 데이터셋의 이점을 정량적으로 평
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가하기 위해 RGB 이미지를 데이터셋을 사용 또는 사

용하지 않고 손 자세 추정기를 학습한다.

3.1. 관련 데이터셋 비교

제안된 데이터셋의 모양과 시점 공간은 기존 RGB

기반 손 포즈 데이터베이스 (STB [7], RHD [3] 및

SH [8])에 비해 더 완벽하다. 제안된 데이터셋의 텍

스쳐와 관절 공간이 Fig. 3(왼쪽 아래)에서 다른 데이

터셋과 비교된다.

텍스쳐 비교. Fig. 3(왼쪽 위)의 상단에서 생성 된 텍

스처를 다른 데이터셋의 텍스처와 질적으로 비교한

다. 텍스처가 다른 합성 데이터셋(RHD[3] 및 SH[8])

에 비해 실제 데이터셋(STB[7])에 약간 더 가깝다는

것을 알 수 있다.

손 관절 공간 비교. Fig. 3(왼쪽 위)의 하단에는 4 개

의 비교 된 데이터셋의 관절 공간이 표시된다. 예상

대로 데이터의 관절 공간은 관련 데이터셋에 비해 밀

도가 더 높다. 이것은 STB에 간단한 손짓 계산이 포

함되어있는 반면 RHD와 SH에는 합성 동작 포즈가

거의 포함되어 있지 않기 때문이라 할 수 있다.

Figure 2. 이기종 작업을 위한 데이터 생성 예시.

Figure 3. 관련 데이터셋 비교 (왼쪽 위/아래),

RGB-to-3D실험 (오른쪽)

3.2. RGB-to-3D 실험

이 섹션에서는 제안 된 데이터셋의 이점을 정량적으

로 평가한다. 이를 위해 제안된 데이터셋를 사용 또

는 사용하지 않고 RGB 기반 손 포즈 추정기 [3]를

훈련하고 얻은 결과를 STB[8] 데이터셋의 최신 결과

와 비교한다.

구현 디테일. RGB 기반 손 포즈 추정기의 경우 코

드가 온라인에서 공개적으로 제공되는 [3]에 제시된

아키텍처를 사용했다. 전체 네트워크는 [3] 논문의

웹 사이트에서 제공하는 사전 훈련 된 가중치를 사

용하여 아키텍처를 초기화했다. 각 세대에서 MANO

모델의 임의의 관점 및 모양 파라미터와 결합된 K =

100,000 관절을 사용하여 아키텍처를 미세 조정한다.

학습률이  이고 기본 β 파라미터로 Adam 최적

화 알고리즘을 사용했다. 기존 Big Hands 2.2M에서

조밀하게 수집하고 [2]에서 데이터베이스의 1/20 배

로 샘플링된 일부만 사용했으며 일부 데이터만을 사

용했어도 약간의 정확도 저하가 관찰되었다. 또한 5

명의 사람만 공개적으로 사용 가능하므로 실제로 총

1,000,0000개 이미지로 공간을 늘렸다. 하위 집합을

사용해도 다른 연구보다 월등한 성능을 얻었다.

결과 분석. Fig. 3(오른쪽)에서 훈련된 손 관절 추정

기 [3]를 기존 4 개의 최신 RGB 기반 3D 골격 추정

알고리즘과 비교하였다 [3, 7, 8, 9]. 각각의 방식들

은 약간 다른 데이터셋을 활용하여 훈련되며 Fig. 3

(오른쪽)의 범례에서 이를 설명한다. 예를 들어,

‘Zimmermann et al. ICCV17 [on STB + RHD]‘는

Zimmermann와 Brox. [3]의 방법을 사용하여 STB

및 RHD 데이터셋에 대해 학습되었다. [7]의 경우 모

델 피팅 방법에 관한 논문이므로 훈련 데이터셋이 필

요하지 않다. Fig. 3(오른쪽)에서 우리는 테스트 데이

터가 실제 이미지일 때도 RGB 기반 손 포즈 추정기

를 훈련하기 위해 합성 데이터셋를 사용하는 이점을

관찰하고자 하였다. 제안된 데이터셋으로 [3]의 네트

워크를 훈련하면 STB 및 RHD를 사용한 훈련에 비해

성능이 크게 향상된다. Iqbal et al. [8] 의 접근 방식

은 평가 된 모든 접근 방식 중에서 가장 성능이 좋은

접근 방식이다. 그러나 네트워크 아키텍처 내에서 정

교한 RGB-D 재구성 모듈을 사용하므로 데이터셋 사

용과 관련하여 결론을 내리기가 어렵다. Mueller et

al. [9]도 CycleGAN을 사용하여 SH 데이터셋를 강

화하여 합성적으로 생성된 데이터를 사용하는 것을

제안했다. Mueller et al. [9]의 작업에 비해 우리의

훈련된 손 포즈 추정기는 더 높은 정확도를 달성하였

다. 이 접근 방식은 심층적인 ResNet 아키텍처를 사

용한다는 점을 고려할 때 더 강력한 아키텍처의 데이

터셋를 사용하면 성능이 향상 될 여지가 있다. 또한

Mueller et al. [9] 의 작업은 실제 데이터셋 STB가

학습 단계에 포함되지 않은 경우 상당한 정확도 저하
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를 보여준다. 우리가 제안한 데이터셋은 이러한 도움

없이도 더 높은 성능을 제공했다.

4. 결론

3D메시, RGB-D 영상과 2D / 3D 손 정답, 세그멘테

이션 마스크를 포함한 새로운 멀티모달 합성 데이터

벤치마크가 제안되었다. 생성된 데이터셋은 기존의

대규모 깊이 손 포즈 데이터셋 BigHand2.2M과 변형

가능한 3D 손 메시 모델 MANO를 활용하여 다양한

손 자세의 변형을 커버할 수 있다. 우리는 RGB 기반

3D 손 자세 추정 및 시맨틱 손 세그멘테이션과 같이

이전에 품질이 큰 벤치마크가 부족하여 방해를 받았

던 손을 활용한 다양한 컴퓨터 비전 작업에 대한 연

구의 발전적인 진행을 위해 제안된 데이터셋이 유용

하게 사용될 것이라 예상한다.
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