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Augmented Deep Reinforcement Learning

Ji Heon Oh!, Ga Hyun Ryu!, Na Hyeon Park!, Edwin Valarezo Afiazco'?, Patricio Rivera Lopez!,
Da Seul Won?, Jin Gyun Jeong?, Yun Jung Chang?, Tae-Seong Kim!~
'Dept. of Electronics and Information Convergence Engineering,
2Dept. of Biomedical Engineering, College of Electronics and Information,
Kyung Hee University, Republic of Korea
SFaculty of Engineering in Electricity and Computation, FIEC., Escuela Superior Politécnica del
Litoral, ESPOL. Guayaquil, Ecuador.

(@] ok
=9 =

# - A28 (Anthropomorphic) 282 AlEx24 A58 7fwslr] $sle] 855 Al (Behavior
Cloning) Deep Reinforcement Learning(DRL) 177} & F o]t} A% (Degree of Freedom, DOF)7} =
S Aty 2EEo sy EAES Ay Y5te], 8% EAlES 53 Human Demonstration
Augmented(DA)3} 8t5& Fsto] AHAE AMes 2Aete Ass SEAZE & dvk 28u
AHE Z2zbe] glof, on] gl HAE JEAE AMEY 54 918 dAsta A steE Wye] #
FAelt. & Aol H8d YOLO7|ES A&sto] A=l 54 H-9E 48k, DA-DRL <
Agste, AHEe 54 FEE gAee e g5 71eS AlRbsta 2 F AMEMA 2 Zhe] &

dol FEe ANsw WA AFwch B ATA Ak SFedde A 5488
Ak g gl gl Agalokshs RoplH 83 Rtk
#E ol shmdole e $19
AZQNA AR mREge 2o SEEAN T gRon AFAg 2]
(Gripen) Pl = 97 mFe] & B 37T wopy T ARE 2RE gAY o= Gl A
Q1] ole} ne (Degree of Freedom) 7} BopA] gh5o] o Hr},
Zalol 7o o1%d A A urE o] ol 7MAstr] flal Abgh HlRE ARESHe] dE
1A

-
“
>
QL
rlr

>~
>
il

o

o
=
Abgh
ZR&Eo] gty Q. ALY A3, o]d 7]HkSk,  Demonstration Augmented Policy
T . g
= A al

- 854 -

HAE ‘&3t Deep Reinforcement Learning(DRL) 77}
HaPEAT. Al dl % (human demonstration) & 53]
B HAS =X TEA7I= AT[4]17F 20

Gradient(DAPG) G A 3 A3} Wiio] 7= A Ths].


mailto:tskim%7d@khu.ac.kr

2020 22fel FAlste U El 3| =&

inal

| |27 ®M[235 (2020, 11)

-

S, YOLO-based Object
] Fart Detection

a\ Human Demonstration
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C. Object Part Detection via YOLO

AFZ Sl BB 9128 9Js]  Darknet 7]HHSQ]
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Detection H O = 24 7] 9] convolution #o]o] ¢} 171
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confidence =

probability(object) = IOU (truth, predict)
classclassificationconfidencescore =
P (:;?::t) * p(object) * IOU(truth, predict) (2)
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D. DAPG
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