

그룹단위 후보 연산 선별을 사용한 자동화된 최적 신경

망 구조 탐색: 후보 연산의 gradient 를 기반으로

박성진, 송하윤

홍익대학교 컴퓨터공학과
demi-tasse@naver.com, hayoon@ hongik.ac.kr

DG-DARTS: Operation Dropping Grouped by Gradient

Differentiable Neural Architecture Search

SeongJin Park, Ha Yoon Song

Department of Computer Engineering, Hongik University

요 약

gradient decent 를 기반으로 한 Differentiable architecture search(DARTS)는 한 번의 Architecture

Search 로 모든 후보 연산 중 가장 가중치가 높은 연산 하나를 선택한다. 이 때 비슷한 종류의 연산

이 가중치를 나누어 갖는 “표의 분산”이 나타나, 성능이 더 좋은 연산이 선택되지 못하는 상황이 발

생한다. 본 연구에서는 이러한 상황을 막기위해 Architecture Parameter 가중치의 gradient 를 기반으로

연산들을 클러스터링 하여 그룹화 한다. 그 후 그룹별로 가중치를 합산하여 높은 가중치를 갖는 그

룹만을 사용하여 한 번 더 Architecture Search 를 진행한다. 각각의 Architecture Search 는 DARTS 의

절반 epoch 만큼 이루어지며, 총 epoch 이 같으나 두번째의 Architecture Search 는 선별된 연산 그룹을

사용하므로 DARTS 에 비해 더 적은 Search Cost 가 요구된다. “표의 분산”문제를 해결하고, 2 번으로

나뉜 Architecture Search 에 따라 CIFAR 10 데이터 셋에 대해 2.46%의 에러와 0.16 GPU-days 의 탐색

시간을 얻을 수 있다.

1. 서론

Neural Architecture Search(NAS)는 Automatic Machine

Learning(AutoML)의 한 분야로서 최근 주목을 받고

있는 분야이다. 다양한 후보 연산들을 조합하여 주어

진 Task 를 해결하는 최적의 모델을 찾도록 하는 방법

이 NAS 이다. NAS 분야의 기반을 잡은 NASnet[1]은

가능한 모델의 경우의 수가 약 개이다. 따라서

NAS 분야는 탐색 범위를 줄이고, 연산을 선택하는 기

준을 바꾸는 등의 방법으로 Search Cost 를 줄이면서

성능을 상승시키는 쪽으로 발전되어 가고 있다. 초기

주류였던 강화학습[1], 유전알고리즘[2]을 사용한 NAS

알고리즘은 몇 천 몇 백 GPU-days 라는 막대한 Search

Cost 가 요구되었으나 Gradient decent 를 기반으로 한

DARTS[3]는 불과 4 GPU-days 와 1 대의 GPU 만으로

기존 연구를 뛰어넘는 정확도를 보여주었다. DARTS

는 주어진 Task 를 해결하는 최적의 Network

Architecture 를 찾기 위해 Cell 내부의 Node 를 잇는

연산을 후보 연산을 모두 사용한 Mixed Operation 으로

사용한다. 학습이 진행됨에 따라 연산들은 각각

Architecture Parameter 가중치가 변경되게 되며, 학습이

끝났을 때 Mixed Operation 에서 가장 큰 가중치를 갖

는 후보 연산 하나만을 선택하여 최종 평가 Network

를 구성한다. DARTS[3]의 후보 연산들 중 비슷한 연

산 결과를 유도하는 연산들(e.g., max pool, average pool)

이 존재한다. 따라서 만약 특정 두 Node 를 잇는 연산

이 pooling 연산이 되어야 가장 좋은 성능을 얻을 수

있다고 가정한다면, max pool 과 average pool 이 가중치

를 나누어 갖기 때문에 제 3 의 연산(e.g., skip

connection)이 선택되는 경우가 나타날 수 있다. 이러

한 상황을 본 연구에서는 “표의 분산”문제라고 정의

하며 이 문제를 해결하기 위해 Architecture Search 를

2 개의 Stage 로 나누어 진행한다. 첫 번째 Stage 의 학

습 후 학습의 진행됨에 따른 가중치의 gradient 를 기

준으로 연산들을 그룹 짓는다. 그 후 그룹별 가중치

의 합을 계산하여 높은 가중치의 그룹을 사용하여 두

번째 Stage 를 진행한다. 이 과정을 통해 “표의 분산”

문제를 해결할 수 있으며, 두 번째 Stage 는 더 적은

후보 연산을 갖게 되므로 DARTS[3]와 동일 epoch 을

학습하더라도 더 짧은 시간(0.16 GPU-days)에 더 좋은

성능(2.46% test error, CIFAR10[4])를 얻을 수 있다.

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 850 -

2. 관련 연구

DARTS[3]의 단점을 해결하기 위한 다양한 논문들

이 존재한다. P-DARTS[5]는 DARTS 가 8cell 의 proxy

모델을 통해 최종 Network 인 20cell 모델을 찾기 때

문에 발생하는 Depth gap 문제를 해결하기 위해 3 회

의 stage 를 거쳐 점진적으로 cell 의 개수를 늘려가며

Architecture Search 를 진행한다. PC-DARTS[6]는

DARTS 의 메모리 부담을 줄이기 위해 Network 의

Channel 을 부분적으로 연결하여 batch 크기를 4 배로

늘려 Search Cost 를 DARTS 의 1/4 로 줄일 수 있었다.

STACNAS[7]는 DARTS 의 two-level optimization 로 인

한 문제를 해결하기 위해 학습 전에 후보 연산의

Feature map 을 구하기 위한 모델을 만들고 이를 통해

상관 계수를 구해 연산을 그룹화 한다. 그 후 각 그

룹의 대표 연산과 승리한 연산 그룹의 연산을 사용하

여 stage0 과 stage1 을 진행한다.

본 연구는 “표의 분산”문제를 STACNAS 와 달리

학습 과정에서 해결함을 목표로 한다. 이를 통해 연

산이 종류가 다른 경우도, 종류는 같으나 필터의 크

기가 같은 경우에도 같은 그룹으로 분류될 수 있어

그룹의 기준 자유도가 높아지는 장점을 갖는다.

3. 이론

3.1 서론: DIFFERENTIABLE ARCHITECTURE

SEARCH (DARTS)

본 연구는 DARTS[3]의 프레임워크를 기반으로 하고

있다. DARTS 의 목표는 network 를 구성하는 L 개의

cell 의 구조를 찾는 것이다. 각각의 cell 은 N 개의

node 를 가진 유향 비 순환 그래프(directed acyclic

graph, 이하 DAG)로 표현되며 각각의 node 는 network

layer 라고 정의된다. 사전에 정의된 연산의 집합(e.g.,

convolution, max pooling, zero)을 라 표기하며,

operation 집합에서 선택된 후보군(e.g., convolution, zero)

함수는 로 표기한다. DARTS 목표인 Cell 의

구조를 찾는 다는 의미는 각 node 의 쌍을 잇는

하나의 연산을 집합 에서 선택하는 것이다. 이 때의

node 쌍을 (i, j)라 표기하며 총 N 개의 노드가

존재하므로 i,j 의 범위는 이다.

(수식 1) DARTS 의 main idea

 는 i 번째 node 의 출력을, 는 architecture

parameter 의 연산 가중치를 의미한다. 각 node 의

출력은 모든 입력들의 수식 1 의 연산 후 합

() 이며, 또한 각 Cell 의 출력은

로 구성된다.

3.2 변화량을 기준으로 한 연산 그룹 선별.

DARTS[3]는 8 개의 cell 로 구성된 proxy

network 에서 도메인 데이터에 대한 최적의 cell

구조를 찾는다. 찾은 cell 에 대한 성능 평가는

이전단계에서 찾은 cell 을 20 개 적층 하여 network 를

구성하고 이를 통해 평가를 진행한다. Search

step 에서 DART 는 proxy network 1 회 만들고,

node(i,j)를 잇는 edge 는 집합 의 k 개의 원소 중

1 개의 원소를 선택한다. 이와 같은 방식은 비슷한

종류의 연산들을 search space 로 사용하는 경우 표의

분산 효과를 일으킬 가능성이 높다. 예를 들어,

Node1 과 2 를 잇는 edge 가 convolution 연산이라면

loss function 이 최소가 되는 경우를 가정하자. 이 경우

학습이 진행됨에 따라 architecture parameter 는

convolution 연산의 가중치를 높이고, 나머지 연산의

가중치를 낮출 것이다. 만약 convolution 연산이

4 종류인 경우 convolution 연산이 가져야 하는

가중치를 4 개의 연산이 나누어 갖게 된다. 이를 쉽게

설명하기 위해 투표에 비유할 수 있다. 정당 A, B 의

후보들 중 1 명의 국회의원을 뽑는 상황을 가정한다.

(그림 3) 본 연구의 Architecture Search step 의 시각화.

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 851 -

정당 A 를 지지하는 시민들은 정당 A 의 후보들 중

한 사람에게 투표를 하게 될 것이다. 후보 단일화가

진행된 B 정당을 지지하는 시민들의 경우 모두 한

사람에게 투표를 하게 된다. 따라서 정당 A 의 총

투표수가 정당 B 보다 높더라도, 최종적으로 표를

가장 많이 받은 정당 B 의 후보가 당선이 될 수 있다.

위와 같은 문제를 방지하기 위해 정책(gard)을

기준으로 후보들(operation)을 정당(clustered group)으로

분류하여 표(architecture parameter weights)를 취합하는

첫번째 투표(stage 0)을 진행하고, 당선된 정당()의

후보들 중 국회의원 (최종 operation)를 뽑는 최종

투표(stage 1)를 진행한다.

본 연구에서는 Search step 을 2 개의 stage 로 나누어

진행한다. Stage 0 에서는 DARTS 와 동일한 방법으로

학습을 진행한다. 학습이 끝난 후, architecture

parameter 의 grad 를 기준으로 연산 ‘none’을 제외한

집합 의 연산들을 k-means 알고리즘을 사용하여

3 개의 클러스터로 분류한다. None 을 하나의

클러스터로 취급하여 총 4 개로 분류된 클러스터

별로 architect parameter 의 weights 를 더하여 가장

높은 weights 를 갖는 클러스터의 연산들을

stage1 에서의 search space 인 집합 에 추가한다.

(의 원소의 개수가 일정 값 미만이라면,

다음으로 weights 의 합이 높은 클러스터의 연산들 중

가중치가 큰 순서로 에 추가한다.) 이후 stage1 은

를 search space 로 하는 DARTS 와 동일하게

진행되며, stage0 보다 적은 수의 연산을 사용하므로

stage0 에 비해 더 빠르게 진행된다.

4. 실험 및 결과

4.1 데이터셋 및 실험 방법

Computer Vision 분야에서 가장 많이 사용되는

데이터 셋 중 하나인 CIFAR10[4]을 사용하여 실험이

진행되었다. CIFAR10 데이터셋은 10 개의 카테고리를

갖는 32 32 해상도의 이미지 6 만장으로 구성

되어있다. 이 중 5 만장이 학습용, 1 만장이 test 용으로

분류 되어 있으며, 본 연구에서는 5 만장의 학습용

데이터를 두 그룹으로 나누어 network 의 학습을 위해

2 만 5 천장, architecture parameter 의 학습을 위해 2 만

5 천장을 사용하였다.
 Proxy network parameter 는 batch size 와 epoch, drop

path prob 을 제외하고 모두 DARTS 와 동일한 값으로

진행되었으며 최초의 의 원소 역시 DARTS 와 동일

한 8 개의 연산('none', 'max_pool_3x3', 'avg_pool_3x3',

'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5',

'dil_conv_3x3', 'dil_conv_5x5’)을 사용한다. 기존 DARTS

에서 1 회의 학습, 50epoch 으로 진행되었고, 본 연구는

총 2 회의 학습을 하게 되므로 기존의 절반인 25epoch

으로 한번의 학습을 진행한다. 이 때 warm start 를 위

해 architecture parameter 를 고정하고 10epoch 을 학습

후 network, architecture parameter 를 둘 다 학습하는

15epoch 을 진행한다((10+15) 2 = 50). Batch size 는 96,

drop path prob 은 0.3 설정하였다. 위의 설정으로

Neural Architecture Search 에 Tesla P100 을 사용하여 3.7

시간이 소요되었다.

Architecture Test Err.(%)
Search Cost

(GPU-days)
Search Method

DenseNet-BC [9] 3.46 - 수작업

NASNet-A [1]+ cutout 2.65 1800 RL

DARTS (1st order) [3] + cutout 3.00 1.5 Gradient-based

DARTS (2nd order) [3]+ cutout 2.76 4 Gradient-based

SNAS (moderate) [10]+ cutout 2.8 1.5 Gradient-based

P-DARTS [5]+ cutout 2.50 0.3 Gradient-based

PC-DARTS [6]+ cutout 2.57 0.1 Gradient-based

DG-DARTS(ours) + cutout + auto argument 2.46 0.16 Gradient-based

(표 1) CIFAR 10 데이터셋을 사용한 state-of art network architecture 들 과의 비교

(그림 4) normal cell 의 1 번째 mixed operation 의

epoch(가로축)에 따른 gradient(세로축)의 변화량

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 852 -

연산의 그룹을 위하여 사용한 Elkan[8] k-means 알고

리즘의 parameter 인 max iterator = 300, tolerance = 1e-4,

number of cluster = 3 으로 진행되었다.

Operation 1 은 max_pool_3x3, avg_pool_3x3//

skip_connect // sep_conv_3x3, sep_conv_5x5, dil_conv_3x3,

dil_conv_5x5 으로 분류되었으며 이는 그림 4 를 통해

확인 할 수 있다. 이러한 클러스터링을 통해 단순 상

위 n 개의 연산을 고를 때 다음 stage 로 가지 못한 연

산이 다음 stage 로 가는 상황을 기대할 수 있게 된다.

4.2 Architecture 평가

20 개의 cell 과 36 개의 채널을 갖는 최종 평가

Network 는 Batch size 96 으로 총 600 epoch 을 학습한

다. Cutout regularization[11] length = 16, auto

argumentation[12]이 사용되었으며, Auxiliary towers[13]

의 가중치 = 0.4, drop-path-prob = 0.3 적용하였으며,

SGD optimizer 의 wight decay = 0.003, momentum = 0.9,

초기 learning rate = 0.025 이며 cosine annealing 을 사용

하였다. 평가의 결과는 표 1 에 요약되어 있다.

(그림 5. a) Normal Cell 의 구조

(그림 5. b) Reduce Cell 의 구조

(그림 5) DG-DARTS 를 통해 찾은 Cell 의 구조

5. 결론

본 연구에서는 DARTS[3]에서 생길 수 있는 “표의

분산”문제를 해결하기 위해 Architecture Search 를 2 개

의 stage 로 나누어 진행하였다. Stage0 에서 Stage1 로

넘어갈 때, 후보 연산을 줄이기 위해서 그룹 단위로

연산을 선별하였다. 이 때 그룹의 기준을 epoch 에 따

른 architecture parameter 의 gradient 로 하여 표를 나눠

갖는 연산의 가중치를 합산해주었다. 이러한 과정을

통해 기존의 DARTS 알고리즘에서 선택되지 못하고

버려졌던 연산을 사용할 수 있게 되었으며 이에 따라

Test Accuracy 가 기존 DARTS 의 97%에서 97.54%로

상승하였다. 또한 동일 epoch 를 학습하더라도 stage1

은 적은 수의 후보 연산을 사용하므로 DARTS 보다

적은 Search Cost 가 소비되며 이로 인해 기존 1.5GPU

days 에서 0.16 gpu days 로 약 9 배의 Cost 감소를 얻을

수 있음을 본 연구에서 확인하였다.

사사

이 연구는 정부(교육과학기술부)의 재원으로 한국연구재

단의 지원을 받아 수행됨(NRF-2019R1F1A1056123).

참고문헌

[1] Zoph, B., and Le, Q. V. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578.

2016.

[2] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc

V Le. Regularized evolution for image classifier

architecture search. In AAAI, 2019.

[3] Liu, H. Simonyan, K. and Yang, Y. DARTS:

Differentiable architecture search. In ICLR. 2019.

[4] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report,

Citeseer, 2009.

[5] Xin Chen, Lingxi Xie, JunWu, and Qi Tian. Progressive

differentiable architecture search: Bridging the depth gap

between search and evaluation. In ICCV, 2019.

[6] Yuhui Xu et al. Pc-darts: Partial channel connections for

memory-efficient architecture search, International

Conference on Learning Representations, 2019.

[7] Li Guilin, Zhang Xing, Wang Zitong, Li Zhenguo, Zhang

Tong, StacNAS: Towards Stable and Consistent

Optimization for Differentiable Neural Architecture

Search, In ICLR, 2020.

[8] Charles Elkan. Using the triangle inequality to accelerate

k-means. In Tom Fawcett and Nina Mishra, editors,

ICML, pp.147-153. AAAI Press, 2003.

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and

Kilian Q Weinberger. Densely connected convolutional

networks. In CVPR, 2017.

[10] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

SNAS: Stochastic neural architecture search. In ICLR,

2019.

[11] Terrance DeVries and Graham W Taylor. Improved

regularization of convolutional neural networks with

cutout. arXiv preprint arXiv:1708.04552, 2017.

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay

Vasudevan, and Quoc V Le. Autoaugment:Learning

augmentation policies from data. arXiv preprint

arXiv:1805.09501, 2018.

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre

Sermanet, Scott Reed, Dragomir Anguelov, Dumitru

Erhan, Vincent Vanhoucke, and Andrew Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 853 -

