2020 2z2fel FAlstewEl 3| =% H273 H|22 (2020, 11)

DRAM-PCM 3}o|H =

w1l w2 et 53

o4 3 ZHA

ZHANG MENGZHAO, 714+, #4lY
SR ELERCE
symbrio@naver.com, junggeun@yonsei.ac.kr, sdkim@yonsei.ac.kr

Dynamical Polynomial Regression Prefetcher for
DRAM-PCM Hybrid Main Memory

Mengzhao Zhang, Jung-Geun Kim, and Shin-Dug Kim
Dept. of Computer Science, Yonsei University

Abstract

This research is to design an effective prefetching method required for DRAM-PCM hybrid main memory
systems especially used for big data applications and massive-scale computing environment. Conventional
prefetchers perform well with regular memory access patterns. However, workloads such as graph processing
show extremely irregular memory access characteristics and thus could not be prefetched accurately. Therefore,
this research proposes an efficient dynamical prefetching algorithm based on the regression method. We have
designed an intelligent prefetch engine that can identify the characteristics of the memory access sequences. It can
perform regular, linear regression or polynomial regression predictive analysis based on the memory access
sequences' characteristics, and dynamically determine the number of pages required for prefetching. Besides, we
also present a DRAM-PCM hybrid memory structure, which can reduce the energy cost and solve the conventional
DRAM memory system's thermal problem. Experiment result shows that the performance has increased by 40%,

compared with the conventional DRAM memory structure.

1. Introduction

With the rapid development of big data analysis and the
increasing volume of generated data, the requirement for
database efficiency has become increasingly urgent.
Considering the demand of low latency performance, several
in-memory-based database systems such as SPARK have
become a popular trend for data processing.

In-memory configuration offers nearly the best power
consumption and performance compared to other parallel
disk systems. To obtain a fast response [1], in-memory
processing allocates all the data needed in the main memory
to minimize the hard disk accessing time [2]. However, this
worsens the bottleneck effect of the memory capacity.
Unfortunately, in real database systems, the capacity of the
main memory has limitations. When the memory space that
the database requires is beyond the main memory's capacity,
data in the main memory will be constrained to move to an
auxiliary storage, which is a considerable drawback for
in-memory processing. Various studies regarding prefetching
between memory layers aimed to prevent this problem, but in
real-world circumstances, accessing the auxiliary storage
layer is inevitable. A few studies have focused on prefetching
between the main-memory layer and the auxiliary storage
layer.

Furthermore, in most commercial database applications,
data are positively associated with large-scale graphs.
Although several studies have focused on data analysis and
mining, little attention has been paid to graph computing [3].

Therefore, in this study, a dynamic recognition prefetch
engine associated with a DRAM-PCM hybrid memory is
proposed. The prefetcher functions dynamically between the
main-memory layer and the auxiliary storage layer with
machine learning technology. Specifically, any memory
request from the last-level cache will be preprocessed first,
then a regression calculation will be performed. Finally, the
prefetcher will determine whether to perform prefetching.
Moreover, the main-memory layer includes a DRAM and
PCM module that can provide exceptional cost efficiency
and performance [3], [4].

Experiments show that the performance has increased by
40%, compared with the conventional DRAM memory
structure. And also compared with the latest prefetch
algorithm, it has also increased by 3%.

2. Related Work

Memory is always a bottleneck for the performance of an
entire modern system. Thus, prefetchers are used to predict
and pre-load data, which can then be accessed by the system
to use directly instead of waiting to read data from a

-20 -

2020 2z2fel FAlstewEl 3| =% H273 H|22 (2020, 11)

lower-level storage.

Theories for predicting data are generally based on time
and spatial locality. Prefetching schemes such as
GHB-PC/DC and stride can compare differences between
data addresses. They are highly accurate and efficient for
regular access patterns [5], [6]. However, one of the most
distinguishing characteristics of graph processing is irregular
memory access patterns [7]. In addition, both SMS and Sarsa
prefetchers do not perform adequately when workloads have

either a low spatial locality or low semantic locality [8], [9].
[Graph processing — tc] ~ [Graph processing —chorrfe]”]

B
fil

N [I

S oo

Igig. 1. IrL;‘eguIarAify of mje‘mory r;quest patterns

Fig. 1 presents the irregularity of memory requests in
graph processing. The x-axis denotes the data accessing
sequence in time and the y-axis indicates the address value.
According to the figure, access patterns of graph processing
cover a massive range of memory space without several
visible regular characteristics.

To address these issues, we need a more intelligent and
aggressive method than conventional techniques. However,
aggressive prefetching methods come with risks of
misprediction, which could lead to the failure of the entire
system. Zhuang et al. and JT Yun et al. proposed a request
table method to reduce the risk of inaccurate prefetching by
distinguishing and discarding bad prefetching results [10],
[11]. Moreover, JT Yun et al. took a further step considering
machine intelligence by proposing a simple linear regression
prefetcher with preprocessing

In JT Yun et al. 's structure, the data address requested
from the last level cache to the main memory will be
recorded in the request table. It pre-processes the data in the
request table, divided into three groups according to the
address value. Among the three groups A, B, and C, the most
extensive data sample size will be regarded as a hot zone.
Then use 2720 (256 pages) address space as a threshold to
denoise the data in the hot zone and remove the address
value exceeding 256 pages [11]. At this point, the
pre-processing is complete. After pre-processing, perform
simple linear regression on the hot zone's denoising data to
obtain the predicted value.

Although such an algorithm is simple and easy to
calculate, it also contains several potential problems. First,
the pre-processing method is too radical and straightforward.
As shown in Figure 2, the graph processing access patterns
are evenly and widely distributed in each address range.
After simply dividing the data into three groups, the

difference in data sample size between groups is not apparent.

That is, the divergence between the hot zone and the cold
zone is not clear. So, it cannot ensure that the next access
address must be in the hot zone. Because of using that as a
basis to perform linear regression calculation, the result
obtained has a high risk of misprediction.

Secondly, the model uses a simple linear regression to
make predictions. It takes the most recent access request as a
reference and returns a single prediction result. In actual

operation, the prefetcher preloads the data in the address
space of the calculated prediction result and 4KB after it (i.e.,
1 page). According to the linear regression method's property,
if the access pattern conforms to the linear regression
characteristics, the next actual access address value A
should obey the Gaussian distribution with the predicted
result A asthe meanandthe o> as the variance.
A~N{d e

Selecting only the prediction result 4 and the address
space of the following 4KB has an obvious error. Therefore,
this study provides a scheme for dynamic prefetching based
on the Gaussian distribution and confidence intervals.

Last but not least, in terms of machine intelligence
algorithms, the model only uses simple linear regression as
its predictive method. When the access pattern's linear
feature is fragile (linearly independent), the model cannot
provide correct prefetch results. For this reason, this article
uses the polynomial regression scheme to ensure that linear
regression will be performed when the access mode is
linearly related, and the polynomial regression algorithm will
be performed when linearly independent [12], [13].

3. Proposed Algorithm

3.1 Pre-processing

In our proposed model, the first step is to classify and
preprocess the memory requests. Because the access patterns
of the graph processing will cover an expansive memory
space, comprehensive statistics on all requests will cause
significant overhead and latency. Therefore, we applied a
secondary table mechanism that matches the global and local
history tables to comprehensively and efficiently collect
memory requests.

The first-level table is a global table that records the
higher 46 bits of the fetch address. The global table will
monitor all the memory space and make updates following
the first in first out (FIFO)'s principle according to time
locality. The second-level table will correspond to each entry
in the first-level table and record the lower 18 bits of the
corresponding address, that is, the offset of each entry in the
global table. The second-level table follows the spatial
locality property and will update in the LRU mode as the
local table. Grouping data according to high bits of addresses
can not only monitor the entire address space, but also
effectively reduce the amount of calculation for regression
analysis.

3.2 Regular Patterns Prefetching

After preprocessing the data, we analyze each entry in the
global table. Owing to an apparent feature of regular pattern
prefetching, which is low overhead, we first determine
whether memory access sequences are regular patterns. We
adopt a method similar to comparing the offset differences in
GHB-PC/DC and stride algorithms to analyze the data. If the
delta between the request sequences has prominent regular
characteristics, prefetching will be processed.

3.2 Polynomial Regression

If there are no prominent regular characteristics in the
memory access sequence, we switch the prefetch mode to
regression analysis. Regression analysis is a statistical
analysis method widely used in the field of machine learning.
It fits the most appropriate hypothetical curve to existing data
and predicts the data's potential trend through this curve [14],
[15]. When applied to machine learning, the existing data are

-21 -

2020 2afel FABE US| =

=& H273 HM|25 (2020, 11)

used as the training set; as the number of data increases, the
regression parameters are continuously learned and modified
to dynamically generate prediction results [16]. Regression
analysis methods are divided into unary regression and
multiple regression analyses.

In this study, we use the least-squares method for unary
regression analysis. We consider the time sequence
corresponding to each offset in the local table as X and the
specific address value as Y, and then sort out a set of (X, Y)
pairs as the training data for machine learning algorithms.
The unary regression analysis includes linear regression and
polynomial regression analysis.

To prevent excessive overhead and over-fitting, we limit
the highest power of the polynomial regression to the second
power and calculate the coefficient matrix by the
Gaussian—Jordan elimination method [17].

3.3 Dynamical Prefetching

In linear regression analysis, the prediction result should
obey the characteristics of the Gaussian distribution. We
choose to dynamically increase the number of prefetched
memory pages based on the confidence interval. When the
prefetcher performs linear regression with the highest power
of 1, we calculate the [A~c, A*oc] interval, which has a
confidence of 66.7%. Then, we compare this interval with
the 12 KB address space (3 pages) and consider the
intersection. As a result, the dynamical prefetcher could
pre-load 1-3 pages depending on the confidence interval.

All prefetched memory pages are stored in an
independent prefetch buffer. Before it is stored in the
prefetch buffer, a redundancy check will be performed to
ensure that there is no duplicate data in the DRAM-PCM
main memory.

4. Performance Evaluation

4.1 GraphBig

In actual commercial database workloads, graphs play a
key role because big data applications that consist of entities
with internal links naturally form a graph.

For further investigating graph processing, Lifeng Nai et
al. from IBM proposed the GraphBig dataset generated based
on real-world cases (e.g., Facebook) as a benchmark.

4.2 Simulation Configurations

We chose GraphBig workload benchmarks to evaluate our
proposed method and gathered the CPU access trace using
PinTool [18]. The workloads are listed in Table 1. We used a
trace-driven simulator to simulate the first, second, and third
levels of cache as well as the DRAM-PCM hybrid main
memory. The proposed system configuration and simulation
parameters are listed in Tables 2 and 3 [19], [20].

<Table 1> Workloads of Graph processing

Workload Using cases

Recommendation for

BFS Commerce

Connected

com-ponent(CCOMP) Social Media Monitoring

Degree centrality(Dcentr) | Social Media Monitoring

Shortest(SPath) Smart Navigation

Triangle count(TC) Data Curation for Enterprise

4.3 Experiment Result

Fig. 2 and 3 present the comparison results of the
execution time and energy consumption. We measured the
execution times and energy consumptions of different
prefetching algorithms under different workloads, compared
the conventional DRAM-PCM memory structure without
prefetching as the benchmark value, and calculated the
normalized execution time and energy consumption.

According to the resulting figures, our model reduced the
execution time by a maximum of 50% compared to the
conventional DRAM-PCM structure without prefetcher, and
the energy consumption was reduced by 21%. Our model
also reduced the execution time by 40% and the energy
consumption by 18%, on average. Compared to the model
proposed by JT Yun, which is state of the art, it excelled in
performance by approximately 3% in both execution time
and energy consumption.

<Table 2> Proposed System Configuration

Processor Quad-cores, 4GHz

L1l & L1D: 32KB, 8-ways
L2: 256KB, 8-ways

L3: 8MB, 16-ways

64byte block size,

LRU replacement

Cache Layer

16MB, 4KB page size,
Fully associativity
LRU replacement

Prefetch Buffer (DRAM)

128MB, 4KB page size,
Fully associativity
LRU replacement

DRAM Memory

2GB, 4KB page size,
Fully associativity
LRU replacement

PCM Memory

<Table 3> Simulation Parameters

Parameter DRAM PCM HDD
Write Latency 20~50ns ~1us ~5ms
Read Latency 20~50ns ~50ns ~5ms
Write Energy 1.2J/GB 6J/GB 65J/GB
Read Energy 0.8J/GB 1J/GB 56/GB
Idle power ~100mW/GB [~1mW/GB ~10W/TB
Density/Cost 1x / 4x 4x [1x N/A

Fig. 4 presents the PCM lifetime under different
prefetching algorithms. The system life calculation formula

is as follows [cal18]
W5

PCM Lifetime =

Where S is the size, B is the traffic of writes, and W is the
limitation of cell endurance. Compared with other algorithms,
our model improves the lifetime of PCM by 6-24% on
average.

5. Conclusion

In summary, this article provides a prefetch model for the
DRAM-PCM hybrid main memory structure that can
dynamically prefetch multiple pages based on the machine
learning algorithm of polynomial regression. In our model,
the memory request from LLC will be preprocessed first,
followed by a regression calculation. Finally, the prefetcher
will determine whether to perform prefetching, as well as the
number of prefetched pages according to the confidence
interval of the calculation.

-22 -

2020 220l FAshawE S

=27 ®M27A ®|23 (2020, 11)

The experiments proved that this model has sufficient
adaptability to irregular storage models. Compared with the
performance of conventional DRAM-PCM memory without
prefetcher, the performance of our model increased by 40%;
compared with the latest prefetch algorithm, it also increased
by 3%.

Execution Time for GraphBig Workloads

1.0
0.5
0.8

07
06
0.5
04
0.3
0.2
0.1
0.0

EFS CCOMP Doentr Spath

mPDRAM ®mGHE ®mSMS mITYun B Proposed
Fig. 2. Norm. Execution Time
Energy Consumption for GraphBig Workloads

1
o

=]

EPDRAM ®GHB m5MS ®IJTYun o Proposed
Fig. 3. Norm. Energy Consumption

PCM Lifetime for GraphBig Workloads
1.0

05
0.8
07
0.6
05
0.4
0.3
02
0.1
0.0

BEF5 CCOomMP Dcentr Spath

EMGHE m5M5 ®ITYun B Proposed

9
B
o7
0.6
0.5
0.4
0.3
0.2
0.1
o

CCOMP S55P

AVG
Fig. 4. Norm. PCM Lifetime
Acknowledgment

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (NRF-2019R1A2C1008716).

REFERENCES

[1] Hasso Plattner, Alexander Zeier, “In-Memory Data
Management”, Heidelberg, Germany, Spriger, 2011.

[2] T. Jiang, Q. Zhang, R. Hou, L. Chai, S.A. McKee, Z. Jia,
N. Sun, “Understanding the behavior of in-memory
computing workloads”, IEEE International Symposium
on Workload Characterization (IISWC), 2014, pp. 22-30.

[3] M. K. Qureshi, et al., “Scalable high performance main
memory system using phase-change = memory
technology”, in Proc. 36th Annu. Int. Symp. Comput.
Archit., 2009, pp. 24-33.

[4] S.-K. Yoon, et al., “Optimized memory-disk integrated

system with DRAM and nonvolatile memory”, TEEE
Trans. MultiScale Comput. Syst. vol. 2, no. 2, pp. 83-93,
Apr.-Jun. 2016.

[5] K. J. Nesbit and J. E. Smith, “Data cache prefetching
using a global history buffer”, in Proc. Int Symp. High
Perform. Comput. Archit., 2004, pp. 96-105.

[6] J. W. C. Fu, et al., “Stride directed prefetching in scalar
processors”, in Proc. IEEE/ACM Int. Symp.
Microarchitecture, 1992, pp. 102-110.

[7T L. Nai, et al, “GraphBIG: Understanding graph
computing in the context of industrial solutions”, in Proc.
Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2015, pp. 1-12.

[8] S. Somogyi, et al., “Spatial memory streaming”
Int. Symp. Comput. Archit., 2006, pp. 252—263.

[9] LIANG Yuan, et al., “Prefetching Algorithm of Sarsa
Learning Based on Space Optimization”, Computer
Science, vol. 46, no. 3, pp. 327-331, Mar. 2019

[10] X. Zhuang, et al., “A hardware-based cache pollution
filtering mechanism for aggressive prefetches”, Proc.
32nd Int. Conf. Parallel Process., 2003, pp. 286-293.

[11] Ji-Tae Yun, et al, “Regression Prefetcher with
Preprocessing for DRAM-PCM Hybrid Main Memory”,
IEEE COMPUTER ARCHITECTURE LETTERS, vol.
17, no. 2, pp. 163-166, JULY-DECEMBER 2018

[12] KANI CHEN, ZHEZHEN JIN, “Local polynomial
regression analysis of clustered data”, Biometrika, vol. 92,
no. 1, pp. 59-74, 2005

[13] Eva Ostertagova, “Modelling using polynomial
regression”, Procedia Engineering, vol. 48, no.l, pp.
500-506, 2012
[14] Mosteller, F. and Tukey, J.W. Data Analysis and
Regression: A Second Course in Statistics. Reading, MA:
Addison-Wesley, 1977

[15] Gelman, A. and Hill, J. Data Analysis Using Regression
and Multilevel/Hierarchical ~Models. Cambridge
University Press, 2006

[16] Caruana, R., Niculescu-Mizil, A.. An empirical
comparison of supervised learning algorithms. In: ICML,
pp. 161168, 2006

[17] Peters, G.,Wilkinson, J.H.: On the stability of
Gauss-Jordan elimination with pivoting. Comm. Assoc.
Comput. Mach. 18, 2024,1975

[18] C.-K. Luk, et al., “Pin: Building customized program
analysis tools with dynamic instrumentation”, in Proc.
ACM SIGPLAN Conf. Program. Language Des.
Implementation, 2005, pp. 190-200.

[19] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking
database algorithms for phase change memory”, in Proc.
CIDR, 2011, pp. 21-31.

[20] K. H. Park, et al., “Mn-mate: Resource management of
many cores with dram and non-volatile memories”, Proc.
12th IEEE Int. Conf. HPCC, Sep. 2010, pp. 24-34.

, in Proc.

-23 -

