
서론1. 
심층신경망 은 높은 정확도와 실용   (deep learning)

성으로 다양한 분야에서 널리 활용되고 있다 현재 . 
심층신경망 모형을 개발하기 위해 수많은 프레임워크
가 제공되고 있으며 개발자들은 대부분 이러한 프레
임워크를 이용하여 모형을 개발한다 개발자들 사이. 
에서 널리 사용되고 있는 프레임워크는 TensorFlow, 

가 있으며 MXNet, Caffe, Theano, PyTorch, DL4J
이러한 프레임워크를 기반으로 등의 R, Matlab, SAS 
전통적인 분석 시스템과 융합한 기술도 활용되고 있
다 이러한 기술은 주로 와 같은 . Python, R, C, Java
언어를 활용하여 모형을 개발하기 때문에 프로그래밍 
기술이 부족한 이용자들은 모형 개발과 활용에 어려
움을 느끼고 있다 을 비롯하여 몇몇 시스템과 . KNIME

등의 상용 클라우드 서비스에서도 AWS, Azure GUI 
기반으로 딥러닝 모형 개발을 지원하지만 상업적 시
스템으로 접근과 활용에 제약이 따른다. 
빅데이터를 활용하여 모형을 구축하기 위해서는 다  

수의 계산 노드와 를 활용하여 분산 학습을 수행GPU
해야 한다 그러나 일반 이용자들이 공개된 프레임워. 

크를 이용하여 복잡한 분산 학습을 수행하기에는 어
려움이 있다 이 연구에서는 복잡한 심층신경망 모형 . 
개발 시 저수준 를 계산 블록 단API(low-level API)
위로 추상화하고 웹에서 블록 기반의 고수준

분석과 분산 학습을 지원하는 기술(high-level API) 
을 통해 복잡한 딥러닝 모형을 보다 간결하고 빠르게 
개발하고 배포할 수 있도록 하였다. 

플랫폼 아키텍처 및 기술 구성2. 

그림 ( 1 플랫폼 아키텍처) 
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요       약
딥러닝 은 기계학습 알고리즘 중 가장 널리 활용되고 있는 알고리즘이다 딥러닝 기술 (deep learning) . 
은 산업 과학 국방 및 공공 부문을 비롯하여 거의 모든 분야에서 폭넓게 확산되고 있다 그러나 기계, , . 
학습 기술에 대한 이해와 프로그래밍 지식이 부족할 경우 자유롭게 활용하는 데는 제약이 따르고 있으
며 빅데이터를 활용하여 일반 이용자들이 직접 분산 학습 모형을 개발하고 배포하는 데 어려움이 발생
하고 있다 이러한 요구를 충족시키기 위해 딥러닝 프레임워크의 저수준 를 추상화하여 고수준 분석. API
과 분산 딥러닝을 지원하고 일반 이용자들이 실무적으로 복잡한 딥러닝 기술을 활용할 수 있는 기술을 
개발하였다 플랫폼 개발과 함께 중요하게 고려해야 하는 요소 중 하나로 플랫폼의 배포와 확장성 역시 . 
고려되어야 한다 본 플랫폼은 조직 내 계산 자원을 이용하여 플랫폼을 배포할 수 있으며 상용 클라우. 
드 서비스와 연동하여 배포할 수 있도록 설계됨에 따라 환경의 제약 없이 유연한 서비스 제공이 가능하
다. 

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 804 -



  개발한 기술은 빅데이터 분석과 딥러닝 모형 구현 
에 활용하기 위한 플랫폼이다 빅데이터를 처리하고 . 
분석하기 위해서는 이나 등의 대용량 Hadoop Spark 
데이터 처리 기술이 필요하며 실시간 빅데이터 처리, 
를 위해서는 와 같은 대용량 메시지를 처리하Kafka
기 위한 기술이 필요하다 유연한 자원 활용과 확장. 
성을 위해서는 가상화 기술과 컨테이너 기술이 요구
되며 나 등을 기반으로 하는 Kubernetes Kubeflow 
빅데이터 및 기계학습 모형 개발이 가능해야 한다. 
딥러닝 모형 개발은 분산 학습을 위한 확장성   

과 코드 블록 을 재활용하기 (scale-out) (code block)
쉬워야 하기 때문에 과 을 적용하였다MXNet GLUON . 
또한 다양한 딥러닝 모형을 상호 교환하기 위해 

기반의 모ONNX(open neural network exchange) 
형 교환 기술을 적용하였다 를 통해 이용자들. ONNX
은 이질적 프레임워크로 모형을 배포하거나 본 플랫
폼으로 모형을 호출하여 학습과 추론 를 (inference)
수행할 수 있다. 
플랫폼을 구축하고 운영하기 위해서는 이용자들이    

조직 내에서 자체적으로 구축한 자원과 AWS, 
등의 클라우드 환Azure, Google Cloud Platform 

경을 동시에 활용하고 연동할 수 있어야 한다 따라. 
서 모든 기술을 컨테이너나 가상머신에 구축하고 이
를 외부 클라우드 서비스와 연동할 수 있도록 설계하
였다. 

분산 딥러닝 모형 개발 환경3. 

그림 ( 2 모형 개발 환경) 

딥러닝 모형은 각각의 계산 단위로 구성된 블록을    
연결하여 개발할 수 있다 각 계산 블록에서는 저수. 
준 에서 요구하는 인자 를 입력할 수 API (argument)
있으며 다수의 저수준 를 하나의 블록에 통합하였API
다 모형 개발은 데이터 처리부터 모형 검증 및 배포. 
에 이르기까지 블록의 연결과 실행을 통해 이루어진

다 개발한 플랫폼에서는 단순한 딥러닝 모형부터 복. 
잡하고 전문적 수준의 모형까지 직관적으로 개발할 
수 있다 이용자들은 등의 . ResNet, DenseNet, VGG 
사전 학습된 모델을 이용하여 자신의 데이터에 적합
하게 전이학습 을 수행할 수 있다(transfer learning)

플랫폼의 기본 프레임워크는 과 [1]. MXNet GLUON
으로 이루어졌기 때문에 이용자들이 다른 프레임워크
에서 개발한 모형을 본 플랫폼에 적용하기 위해서는 
이용자 코드를 적용하고 실행할 수 있어야 한다 이. 
를 위해 사용자 정의 모델 을 (user defined model)
호출하고 실행할 수 있도록 하였다. 

그림 ( 3 딥러닝 모형 개발 흐름) 

빅데이터를 기반으로 모형을 개발하기 위해서는 분  
산 학습 기술이 필요하다 분산 학습은 크게 데이터 . 
병렬화 와 모형 병렬화(data parallelism) (model 

로 구분한다 일반적으로 빅데이parallelism) [2, 3, 4]. 
터를 이용한 학습은 데이터 병렬화에 해당한다 데[4]. 
이터 병렬화를 이용한 딥러닝 모형 구축은 다수의 계
산 자원에 데이터를 분할하여 할당하고 각 자원 별로 
단계 별 학습을 수행한 후 파라미터를 공유하거나 갱
신하는 방식으로 이루어진다 파라미터 또는 가중치 . 
갱신은 일반적으로 동기식 업데이트(synchronous 

방식을 사용하지만 경우에 따라 비동기식 update) 
업데이트 방식을 사용하기도 (asynchronous update) 
한다 때로는 이 두 가지 방식을 혼용. (hybrid 

하여 사용할 수도 있다 파라미터 갱신은 일update) . 
반적으로 단일 또는 다수의 파라미터 서버를 설정하
고 다수의 계산 노드 와 통신하며 파라(worker node)
미터를 서로 공유하고 갱신하게 된다 이 과정에서 . 
필연적으로 상당한 통신비용이 발생하게 된다. 
본 플랫폼에서는 을 기본 프레임워크로 사   MXNet

용하고 있지만 에 구현된 자체 분산 학습 기MXNet
술인 파라미터 서버 방식의 가중치 갱신 방식을 사용
하지 않고 기반의 분산 학습 기술을 적용Horovod 
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하였다 이미 언급한 바와 같이 파리미터 서버 방식. 
의 기술은 업데이트해야 하는 파라미터가 많을 경우 
네트워크 병목으로 인한 성능 저하가 발생한다. 

의 경우 대규모 클러스터에서 파라미터 업Horovod
데이트에 적합한 기술로 데이터의 증가와 계산 자원
의 증가 로 인한 성능 저하를 줄일 수 있(scale-out)
다 업데이트에 필요한 파라미터의 규모는 데이[5, 6]. 
터의 양과 모형의 복잡도에 비례해서 증가하기 때문
에 빅데이터를 활용하여 모형을 개발할 경우 분산 학
습 기술의 필요성이 더욱 높아지게 된다 그러나 분. 
산 학습을 위해서는 분산 컴퓨팅이나 병렬 컴퓨팅에 
대한 지식과 경험이 필요하며 이러한 이유로 대부분
의 이용자들은 분산 학습에 어려움을 느끼고 있다. 
본 플랫폼을 사용할 경우 이용자들은 분산 학습에 대
한 전문적 지식을 필요로 하지 않으며 단지 원하는 
계산 자원의 유형과 규모를 선택하여 학습을 수행하
면 되기 때문에 모형 개발에 집중할 수 있다. 
이 연구에서 제안하는 플랫폼에서는 이용자의 요   

청에 따라 가용한 자원을 할당하고 학습 과정을 수행
하며 진행 상황을 모니터링 하고 관리할 수 있는 환
경을 제공한다 다수의 사용자가 단일 시스템을 동시. 
에 이용하기 때문에 가용한 자원을 확인하고 자원 할
당 정보를 공유할 수 있도록 관리 기능을 구현하였
다 다른 사용자의 자원 점유로 요청한 자원에 여유. 
가 없을 경우 스케줄러 의 큐 에 (scheduler) (queue)
작업을 할당하고 가용 자원이 존재할 때 이용자가 요
청한 자원과 작업을 처리하게 된다. 

결론4. 
본 연구에서 개발한 플랫폼은 기계학습 전문가부터   

모형 개발에 필요한 기초 개념을 이해한 일반 이용자
까지 빠르고 직관적으로 복잡한 딥러닝 모형을 개발
할 수 있도록 지원한다 또한 분산 컴퓨팅에 대한 전. 
문 지식과 경험 없이 빅데이터를 활용하여 고성능의 
분산 학습을 수행할 수 있는 기술을 제공하고 있다. 
이에 따라 이용자들은 모형 개발에만 집중할 수 있고 
복잡한 분산 컴퓨팅 기술을 이해하는 데 필요한 시간
을 절약할 수 있다 플랫폼 배포와 관리를 클라우드 . 
환경에 적용할 수 있기 때문에 보다 폭넓은 활용과 
유연한 서비스 제공이 가능하다 아울러 작업 관리와 . 
자원 할당 기능을 제공하기 때문에 다수의 사용자가 
동시에 플랫폼을 사용할 경우 효율적 자원 분배와 공
유가 가능하다. 
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