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Abstract—Edge caching is one of the key technologies that 

enable low-latency communications in 5G and beyond 5G 

networks. Performance of an edge caching scheme may vary 

depending on the type of learning model. Thus, edge caching 

schemes present different performance when centralized or 

decentralized learning algorithms are used. In this study, we 

outline the performance gains of decentralized edge caching. We 

consider various edge caching frameworks based on deep 

learning (DL), deep reinforcement learning (DRL), and federated 

learning (FL) algorithms. It is shown that decentralized 

frameworks present viable mechanisms to outperform 

centralized frameworks, especially in dynamic and heterogeneous 

large-scale networks or complex IoT environments. 

Keywords—5G; ultra-reliable low-latency communications; 

edge caching; decentralized edge caching; federated learning. 

I.  INTRODUCTION  

Ultra-reliable low-latency communications (URLLC) is 

probably the most talked-about 5G and beyond 5G (B5G) use 

case mainly because of the huge services it can support [1]. 

URLLC aims to deliver a vastly reliable mobile wireless 

network with extremely low latency requirements. Edge 

caching is one of the key technologies that facilitate low-

latency communications in 5G and B5G networks. 

Particularly, mobile edge caching (MEC) has been regarded as 

a promising technique to provide low latency for content 

access [1]-[3]. In the MEC systems, popular contents can be 

cached in proximity to the edges of networks in edge devices 

(EDs), e.g. base stations (BSs) and user equipment (UE) (or 

mobile devices), which reduces massive duplicated traffic of 

content deliveries via backhaul networks and shortens the 

content delivery latency [3]-[26]. An example use case of a 

MEC system may be video caching on the network edge. At 

present, video delivery is the dominant traffic in the network. 

In the year 2022, more than 82% of network traffic will be 

video traffic, and this number will increase to 90% by the year 

2025 [5]. In video delivery, reducing network delay is one of 

the key factors for improving users’ quality of experience 

(e.g., significantly reduce the playback latency). Therefore, 

video caching is pushed from the cloud server to the edge 

network to provide end-users a low-delay video delivery [5].  

Employing an appropriate caching algorithm is pivotal to 

increase the overall quality of experience in content 

distribution systems as 1% increase in hit rate can have a 

positive impact [1]. Therefore, in this study, we investigate the 

performance of centralized and decentralized edge caching 

solutions. We consider various edge caching frameworks 

based on deep learning (DL), deep reinforcement learning 

(DRL), and federated learning (FL) algorithms. Subsequently, 

we highlight the performance gains of the decentralized edge 

caching frameworks. 

II. CENTRALIZED AND DECENTRALIZED EDGE CACHING  

SCHEMES 

In general, edge caching-enabled systems may be identified 

as centralized or decentralized, based on their learning models 

[7], [27]. Due to bandwidth, storage, and privacy concerns, 

centralized edge caching systems are often impractical [26]. 

The centralized caching algorithms may result in 

overconsumed network resources during the training and data 

transmission processes [9]. The effects of centralized caching 

schemes can become severe in dynamic and heterogeneous 

large-scale systems. The centralized edge caching may be 

realized through DL or DRL algorithms. To address the 

challenges of centralized edge caching, decentralized caching 

schemes are considered. The decentralized edge caching 

frameworks may be realized through DL, DRL, or FL 

algorithms. Thus, all FL schemes are decentralized. FL is 

becoming increasingly popular in 5G and B5G networks 

because it is effective and privacy-preserving by design [28], 

[29]. 

Decentralized edge caching schemes are often considered 

because it is assumed that most 5G and B5G networks will be 

based on decentralized and infrastructureless communication 

to enable devices to cooperate directly over device-to-device 

spontaneous connections [30]. 

III. PERFORMANCE INVESTIGATIONS 

In our investigations, we consider various edge caching 

solutions based on DL, DRL, and FL learning algorithms. 

Also, multi-agent DRL (MADRL) and distributed DL (DDL) 

are considered. The solutions are adopted from [7], [9], [17], 

[19]-[21], [31], and [32]. Then, we examine the performance 

of the solutions. Our observations are based on the analysis 

and evaluations presented in [7], [9], [17], [19]-[21], [31], 

[32]. A summary of the observations is presented in Table I.  

 The performance of the DL, DRL, and FL edge caching 

solutions is compared to the performance of two baseline 

solutions, the least recently used (LRU) and least frequently 

used (LFU) caching solutions which are commonly used by 

content providers [7], [21]. In the LRU algorithm, the system 

keeps track of the most recent requests for every cached data 
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Technique Limitations 
Example 

solution 
Objective Learning  model Performance 

DL-based 

edge 
caching 

 Traditional DL-based 
optimization and prediction 

schemes take a long running 

time of recursions for 
converging to the optimal 

model.  

 In centralized schemes, sending 
streams of raw training data to 

server can increase network 

traffic and energy consumption. 
 Most schemes cannot handle 

non-IID data or privacy 

preservation issues. 

DLs 
[19] 

 Reduce latency and 
backhaul network 

traffic for 5G 

mobile video 
streaming. 

 Decentralized DL 
algorithm. 

 Lower latency than LRU and LFU. 

 Higher cache hit rate than LRU and 

LFU. 

DLs2 

[17] 

 Reduce service 
delay for UEs and 

error of content 

demand prediction. 

 Centralized DL 

algorithm.  

 Lower latency than LRU and LFU. 

 Higher cache hit rate than LRU and 

LFU. 
 Higher latency than DDLs. 

 Lower cache hit rate than DDLs. 

DDLs 

[17] 

 Reduce service 
delay for UEs and 

error of content 

request prediction 
while preserving 

privacy of UEs 

data. 
 

 Decentralized DDL 

algorithm. 

 Lower latency than LRU, LFU and 

DLs2. 

 Higher cache hit rate than LRU, LFU 

and DLs2. 

DRL-based 

edge 
caching 

 Requires intensive computation 

capacity for finding optimal 

model particularly in large-
scale data. 

 Achieves reduced performance 

when UEs and network states 
are heterogeneous. 

 In large-scale data with massive 
UEs, centralized DRL schemes 

incur increased traffic on uplink 

wireless channels.  
 In large-scale data with massive 

UEs, it is challenging to 

perform decentralized DRL due 
to relatively weak computation 

capability of UEs. Also, it takes 

long time to train the DRL 
agent. 

 Decentralized DRL increases 

the energy cost at the UEs. 
 Most schemes cannot handle 

unbalanced and non-IID data or 

privacy preservation issues.  
 

DRLs 
[32] 

 Minimize 
communication 

cost and loss of 

data freshness in 
IoT applications. 

 Centralized DRL 
algorithm. 

 Significantly lower latency than LRU 

and LFU. 

 Significantly higher cache hit rate 
than LRU and LFU.  

 Higher latency than MADRLs. 

 Lower cache hit rate than MADRLs. 

MADRLs 
[21] 

 Minimize content 

access latency and 

traffic cost in 
diversified 5G 

video streaming 

environment. 

 Decentralized 
MADRL algorithm. 

 Significantly lower latency than LRU 

and LFU. 

 Significantly higher cache hit rate 
than LRU and LFU. 

 Lower latency than DRLs. 

 Higher cache hit rate than DRLs. 

DRLs2 

[7] 

 Improve cache hit 

rate in media-

enabled 

applications. 

 Centralized DRL 
algorithm. 

 

 Higher cache hit rate than LRU and 

LFU but lower than MADRLs2. 

MADRLs2 

[7] 

 Reduce latency and 

improve cache hit 
rate in media-

enabled 

applications. 

 Decentralized 

MADRL algorithm. 

 Lower latency than LRU, LFU, and 

DRLs2. 

 Higher cache hit rate than LRU, 
LFU, and DRLs2. 

FL-based 

edge 

caching 

 When traditional algorithms 

such as FedAvg is used, FL 
suffers from a large number of 

communication rounds to 

convergence with non-IID 
datasets. Also, has high 

communication overhead.  

FedDRLs 

[9] 

 Reduce latency, 
performance loss, 

and backhaul 

traffic while 
improving hit rate 

in IoT systems.   

 FL-based DRL 

algorithm.  

 Significantly lower latency than LRU 

and LFU.  

 Significantly higher cache hit rate 
than LRU and LFU. 

 Latency and cache hit rate are 

comparable to a centralized DRL 
scheme.   

FedDRLs2 
[20] 

 Make mobile 

communication 
system cognitive 

and adaptive, 

reduce network 
traffic, and achieve 

near-optimal 

performance with 
low overhead of 

learning. 

 FL-based DRL 
algorithm. 

 Significantly higher cache hit rate 

than LRU and LFU. 
 Cache hit rate is comparable to a 

centralized DRL scheme.   

FedDRLs3 

[31] 

 Reduce 
transmission costs 

between IoT 

devices and EDs. 

 FL-based DRL 

algorithm. 

 Transmission time is comparable to a 

centralized DRL.   

 

TABLE I. PERFORMANCE FEATURES OF CENTRALIZED AND DECENTRALIZED EDGE CACHING  SCHEMES. 
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content. When the cache storage becomes full, the cached 

content which is requested least recently, is replaced by the 

new content [7], [9]. For the LFU algorithm, the system keeps 

track of the number of requests for every cached content. 

When the cache storage becomes full, the cached content 

which is least frequently requested, is replaced by the new 

content [7], [9]. We compare the performance of the 

solutions in terms of content delivery latency and cache hit 

rate. The cache hit rate is used to show how frequently the 

requested content is found in the local cache [7], [21]. 

Therefore, we assume that cache hit rate indicates 

the content acquisition reliability. That means, a high 

cache hit rate corresponds to high content acquisition 

reliability. 

 It is shown in Table I that the DL, DRL, and FL edge 

caching solutions are capable of achieving improved 

performance in terms of content delivery latency and cache hit 

rate to outperform the LRU and LFU solutions. The main 

reason for the poor performance in the LRU and LFU 

solutions is that, the algorithms in LRU and LFU do not 

consider the popularity of contents in the future. As a result, 

the solutions do not adapt well to the dynamically changing 

content popularity and they achieve low cache efficiency [24], 

[33]. For instance, the LFU framework is not able to reach a 

good performance in IoT environment because it does not 

consider the saltation and timeliness of the IoT data popularity 

[33]. It was also shown in [9], [19], [21] that the DL, DRL, 

and FL edge caching solutions are capable of achieving 

reduced backhaul network traffic to outperform the LRU and 

LFU solutions. 

 On the other hand, Table I shows that although the 

solutions with centralized DL, DRL, and FL algorithms 

perform better than the LRU and LFU solutions, the 

centralized solutions present reduced performance when 

compared to the solutions with decentralized algorithms. For 

example, it was shown in [17] that a DDL solution performs 

better than a centralized DL solution in terms of latency and 

cache hit rate. Furthermore, since the DDL framework only 

needs to collect the trained models from the EDs without 

considering any raw dataset transmission, the DDL framework 

was able to achieve reduced communication overhead. Also, 

the DDL was able to learn the dataset faster than the 

centralized DL as the number of the EDs was increased. It was 

also presented in [7], [21] that decentralized MADRL 

frameworks achieve better performance than centralized DRL 

frameworks. As an example, when a massively vibrant, 

diversified, and distributed video streaming environment was 

considered in [21], a decentralized MADRL framework 

presented better performance than a centralized DRL 

framework in terms of video access latency and the traffic 

cost. In [20], it was revealed that a FL scheme can consume 

significantly lower communication resources than a 

centralized DRL framework. In [20], [31], it was presented 

that the FL-based solutions achieve a lower number of 

dropped tasks, queuing delay, and transmission energy to 

outperform the DRL solutions. 

 Conversely, when the performance of the FL frameworks 

was investigated in [9], [20], [31], it was revealed that 

although FL schemes can address the challenges of DRL and 

DL frameworks, the FL schemes are less capable of achieving 

significantly improved performance in terms of content access 

latency and cache hit rate. For example, the performance of 

the FL schemes in [9], [20], [31] was comparable to the 

performance of the centralized DRL schemes once the model 

aggregation of FL was performed several times. That means, 

for the FL algorithms to achieve the performance level of the 

centralized DRL algorithms in terms of content access latency 

and cache hit rate, the FL algorithms must allow several 

rounds of model aggregation.  

 On the other hand, it was pointed out in [9], [31] that the 

performance level of the FL schemes is reasonable since the 

FL schemes assume more practical network conditions. As an 

example, the centralized DRL scheme considered in [9], [20], 

[31] assumed that the massive training data can be 

successfully uploaded to the ED without loss or delay. 

Considering the limitations of wireless channels, the 

assumption made by the DRL scheme may be impractical. 

Moreover, the work in [20], [34] considered the challenge that 

when not independent and identically distributed (non-IID) 

datasets are used, FL algorithms incur large number of 

communication rounds to converge to the global optimal. 

Consequently, [20], [25], [34] highlighted the technique of 

transfer learning as a potential solution for the challenge. 

Thus, [20], [25], [34] considered the use of transfer learning 

technique to improve the learning efficiency of the FL 

algorithms. It was pointed out in [34] that the transfer learning 

technique can ensure training is not initialized from scratch. In 

[25], it was demonstrated that personalized federated learning 

can significantly reduce the performance degradations caused 

by the non-IID data. 

 Several other benefits of using FL edge caching were 

highlighted in [15], [20], [22], [27], [34]. The following 

benefits were outlined: the system becomes more cognitive 

and robust, improved flexibility, reduced network traffic and 

energy consumption, privacy preservation, and improved 

stability despite loss of connectivity. 

 

IV.  CONCLUSION AND FUTURE WORK 

This paper presents some investigations on the performance 
features of centralized and decentralized edge caching 
schemes. It is shown that decentralized frameworks present 
better performance than centralized frameworks in terms of 
content delivery latency and traffic cost. Moreover, the 
decentralized frameworks perform better in a massively 
vibrant, diversified, and distributed video streaming 
environment or in dynamic and heterogeneous large-scale 
networks where devices are resource-constrained, including in 
complex IoT environments. Furthermore, it is shown that FL 
edge caching presents viable mechanisms in 5G and B5G 
networks. However, traditional FL algorithms incur high 
communication overhead. Therefore, as part of our future 
work, we will explore the techniques to improve the 
communication efficiency of FL algorithms. In particular, we 
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will study the mechanisms of transfer learning and 
personalized FL. 
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