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Abstract—Edge caching is one of the key technologies that
enable low-latency communications in 5G and beyond 5G
networks. Performance of an edge caching scheme may vary
depending on the type of learning model. Thus, edge caching
schemes present different performance when centralized or
decentralized learning algorithms are used. In this study, we
outline the performance gains of decentralized edge caching. We
consider various edge caching frameworks based on deep
learning (DL), deep reinforcement learning (DRL), and federated
learning (FL) algorithms. It is shown that decentralized
frameworks present viable mechanisms to outperform
centralized frameworks, especially in dynamic and heterogeneous
large-scale networks or complex 10T environments.
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Ultra-reliable low-latency communications (URLLC) is
probably the most talked-about 5G and beyond 5G (B5G) use
case mainly because of the huge services it can support [1].
URLLC aims to deliver a vastly reliable mobile wireless
network with extremely low latency requirements. Edge
caching is one of the key technologies that facilitate low-
latency communications in 5G and B5G networks.
Particularly, mobile edge caching (MEC) has been regarded as
a promising technique to provide low latency for content
access [1]-[3]. In the MEC systems, popular contents can be
cached in proximity to the edges of networks in edge devices
(EDs), e.g. base stations (BSs) and user equipment (UE) (or
mobile devices), which reduces massive duplicated traffic of
content deliveries via backhaul networks and shortens the
content delivery latency [3]-[26]. An example use case of a
MEC system may be video caching on the network edge. At
present, video delivery is the dominant traffic in the network.
In the year 2022, more than 82% of network traffic will be
video traffic, and this number will increase to 90% by the year
2025 [5]. In video delivery, reducing network delay is one of
the key factors for improving users’ quality of experience
(e.g., significantly reduce the playback latency). Therefore,
video caching is pushed from the cloud server to the edge
network to provide end-users a low-delay video delivery [5].

Employing an appropriate caching algorithm is pivotal to
increase the overall quality of experience in content
distribution systems as 1% increase in hit rate can have a
positive impact [1]. Therefore, in this study, we investigate the
performance of centralized and decentralized edge caching
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solutions. We consider various edge caching frameworks
based on deep learning (DL), deep reinforcement learning
(DRL), and federated learning (FL) algorithms. Subsequently,
we highlight the performance gains of the decentralized edge
caching frameworks.

Il.  CENTRALIZED AND DECENTRALIZED EDGE CACHING

SCHEMES

In general, edge caching-enabled systems may be identified
as centralized or decentralized, based on their learning models
[7], [27]. Due to bandwidth, storage, and privacy concerns,
centralized edge caching systems are often impractical [26].
The centralized caching algorithms may result in
overconsumed network resources during the training and data
transmission processes [9]. The effects of centralized caching
schemes can become severe in dynamic and heterogeneous
large-scale systems. The centralized edge caching may be
realized through DL or DRL algorithms. To address the
challenges of centralized edge caching, decentralized caching
schemes are considered. The decentralized edge caching
frameworks may be realized through DL, DRL, or FL
algorithms. Thus, all FL schemes are decentralized. FL is
becoming increasingly popular in 5G and B5G networks
because it is effective and privacy-preserving by design [28],
[29].

Decentralized edge caching schemes are often considered
because it is assumed that most 5G and B5G networks will be
based on decentralized and infrastructureless communication
to enable devices to cooperate directly over device-to-device
spontaneous connections [30].

In our investigations, we consider various edge caching
solutions based on DL, DRL, and FL learning algorithms.
Also, multi-agent DRL (MADRL) and distributed DL (DDL)
are considered. The solutions are adopted from [7], [9], [17],
[19]-[21], [31], and [32]. Then, we examine the performance
of the solutions. Our observations are based on the analysis
and evaluations presented in [7], [9], [17], [19]-[21], [31],
[32]. A summary of the observations is presented in Table I.

The performance of the DL, DRL, and FL edge caching
solutions is compared to the performance of two baseline
solutions, the least recently used (LRU) and least frequently
used (LFU) caching solutions which are commonly used by
content providers [7], [21]. In the LRU algorithm, the system
keeps track of the most recent requests for every cached data
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TABLE I. PERFORMANCE FEATURES OF CENTRALIZED AND DECENTRALIZED EDGE CACHING SCHEMES.

Example

Technique Limitations f Objective Learning model Performance
solution
« Reduce latency and

backhaul network . « Lower latency than LRU and LFU.

Traditional DL-based |[31|§§ traffic for 5G : zegiﬂtr:amllzed DL « Higher cache hit rate than LRU and
radtiona ased mobile video 9 ' LFU.

optimization and prediction t -
schemes take a long running STreaming.

. - . « Lower latency than LRU and LFU.
time of recursions for « Reduce service . Higher cache hit rate than LRU and
converging to the optimal DLs2 delay for UEsand  « Centralized DL LF?J

DL-based model. [17] error of content algorithm. .
. . T « Higher latency than DDLs.
edge In centralized schemes, sending demand prediction. .
. . « Lower cache hit rate than DDLs.
caching streams of raw training data to Red -

server can increase network ‘ deela;Cfeo fe&ggzn q

traffic and energy consumption. error of content « Lower latency than LRU, LFU and

Most schemes cannot handle - .

. DDLs request prediction « Decentralized DDL DLs2.
non-11D data or privacy . : - h .
P [17] while preserving algorithm. « Higher cache hit rate than LRU, LFU

preservation issues. -
privacy of UEs and DLs2.
data.

Requires intensive computation R « Significantly lower latency than LRU

- U ' « Minimize

capacity for finding optimal communication and LFU.

model particularly in large- DRLs « Centralized DRL « Significantly higher cache hit rate
cost and loss of -

scale data. [32] data freshness in algorithm. than LRU and LFU.

Achieves reduced performance 10T applications « Higher latency than MADRLs.

when UEs and network states PP ) « Lower cache hit rate than MADRLs.

are heterogeneous. « Minimize content « Significantly lower latency than LRU

In large-scale data with massive access latency and and LFU.

UEs, centralized DRL schemes MADRLs traffic cost in « Decentralized « Significantly higher cache hit rate
incur increased traffic on uplink ~ [21] diversified 5G MADRL algorithm. than LRU and LFU.
DRL-based wireless channels. video streaming « Lower latency than DRLs.
edge « In large-scale data with massive environment. « Higher cache hit rate than DRLSs.
g UEs, it is challenging to DRLs2 « Improve cache hit .
cachin . . . .

g perform decentralized DRL due [71 rate in media- Clentrri?::éed DRL « Higher cache hit rate than LRU and
to relatively weak computation enabled algorithm. LFU but lower than MADRLS2.
capability of UEs. Also, it takes applications.
long time to train the DRL
agent. Reduce lat d
Decentralized DRL increases + Teduce la e”hcyha.;‘ « Lower latency than LRU, LFU, and
the energy cost at the UEs. MADRLs2 Irr;sri%\ﬁggfa-e " . Decentralized DRLs2.

Most schemes cannot handle [71 bled MADRL algorithm.  « Higher cache hit rate than LRU,
unbalanced and non-11D data or enal_ N i LFU, and DRLs2.
privacy preservation issues. applications.

. Reduce latency, . eSlrlft]jnll_f'l:cljmtIy lower latency than LRU
performance loss, L - .
FedDRLs and backhaul o FL-based DRL » Significantly higher cache hit rate
[9] traffic while algorithm than LRU and LFU.
h A ) « Latency and cache hit rate are
improving hit rate -
. comparable to a centralized DRL
in 10T systems.
scheme.
When traditional algorithms « Make mobile
such as FedAvg is used, FL communication
FL-based suffers from a large number of system cognitive
edge communication rounds to and adaptive, « Significantly higher cache hit rate
caching convergence with non-11D FedDRLs2 reduce network o FL-based DRL than LRU and LFU.
datasets. Also, has high [20] traffic, and achieve algorithm. « Cache hit rate is comparable to a
communication overhead. near-optimal centralized DRL scheme.
performance with
low overhead of
learning.
« Reduce
FedDRLs3 transmission costs « FL-based DRL « Transmission time is comparable to a
[31] between loT algorithm. centralized DRL.

devices and EDs.
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content. When the cache storage becomes full, the cached
content which is requested least recently, is replaced by the
new content [7], [9]. For the LFU algorithm, the system keeps
track of the number of requests for every cached content.
When the cache storage becomes full, the cached content
which is least frequently requested, is replaced by the new
content [7], [9]. We compare the performance of the
solutions in terms of content delivery latency and cache hit
rate. The cache hit rate is used to show how frequently the
requested content is found in the local cache [7], [21].
Therefore, we assume that cache hit rate indicates
the content acquisition reliability. That means, a high
cache hit rate corresponds to high content acquisition
reliability.

It is shown in Table | that the DL, DRL, and FL edge
caching solutions are capable of achieving improved
performance in terms of content delivery latency and cache hit
rate to outperform the LRU and LFU solutions. The main
reason for the poor performance in the LRU and LFU
solutions is that, the algorithms in LRU and LFU do not
consider the popularity of contents in the future. As a result,
the solutions do not adapt well to the dynamically changing
content popularity and they achieve low cache efficiency [24],
[33]. For instance, the LFU framework is not able to reach a
good performance in 10T environment because it does not
consider the saltation and timeliness of the 10T data popularity
[33]. It was also shown in [9], [19], [21] that the DL, DRL,
and FL edge caching solutions are capable of achieving
reduced backhaul network traffic to outperform the LRU and
LFU solutions.

On the other hand, Table | shows that although the
solutions with centralized DL, DRL, and FL algorithms
perform better than the LRU and LFU solutions, the
centralized solutions present reduced performance when
compared to the solutions with decentralized algorithms. For
example, it was shown in [17] that a DDL solution performs
better than a centralized DL solution in terms of latency and
cache hit rate. Furthermore, since the DDL framework only
needs to collect the trained models from the EDs without
considering any raw dataset transmission, the DDL framework
was able to achieve reduced communication overhead. Also,
the DDL was able to learn the dataset faster than the
centralized DL as the number of the EDs was increased. It was
also presented in [7], [21] that decentralized MADRL
frameworks achieve better performance than centralized DRL
frameworks. As an example, when a massively vibrant,
diversified, and distributed video streaming environment was
considered in [21], a decentralized MADRL framework
presented better performance than a centralized DRL
framework in terms of video access latency and the traffic
cost. In [20], it was revealed that a FL scheme can consume
significantly lower communication resources than a
centralized DRL framework. In [20], [31], it was presented
that the FL-based solutions achieve a lower number of
dropped tasks, queuing delay, and transmission energy to
outperform the DRL solutions.
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Conversely, when the performance of the FL frameworks
was investigated in [9], [20], [31], it was revealed that
although FL schemes can address the challenges of DRL and
DL frameworks, the FL schemes are less capable of achieving
significantly improved performance in terms of content access
latency and cache hit rate. For example, the performance of
the FL schemes in [9], [20], [31] was comparable to the
performance of the centralized DRL schemes once the model
aggregation of FL was performed several times. That means,
for the FL algorithms to achieve the performance level of the
centralized DRL algorithms in terms of content access latency
and cache hit rate, the FL algorithms must allow several
rounds of model aggregation.

On the other hand, it was pointed out in [9], [31] that the
performance level of the FL schemes is reasonable since the
FL schemes assume more practical network conditions. As an
example, the centralized DRL scheme considered in [9], [20],
[31] assumed that the massive training data can be
successfully uploaded to the ED without loss or delay.
Considering the limitations of wireless channels, the
assumption made by the DRL scheme may be impractical.
Moreover, the work in [20], [34] considered the challenge that
when not independent and identically distributed (non-11D)
datasets are used, FL algorithms incur large number of
communication rounds to converge to the global optimal.
Consequently, [20], [25], [34] highlighted the technique of
transfer learning as a potential solution for the challenge.
Thus, [20], [25], [34] considered the use of transfer learning
technique to improve the learning efficiency of the FL
algorithms. It was pointed out in [34] that the transfer learning
technique can ensure training is not initialized from scratch. In
[25], it was demonstrated that personalized federated learning
can significantly reduce the performance degradations caused
by the non-11D data.

Several other benefits of using FL edge caching were
highlighted in [15], [20], [22], [27], [34]. The following
benefits were outlined: the system becomes more cognitive
and robust, improved flexibility, reduced network traffic and
energy consumption, privacy preservation, and improved
stability despite loss of connectivity.

V. CONCLUSION AND FUTURE WORK

This paper presents some investigations on the performance
features of centralized and decentralized edge caching
schemes. It is shown that decentralized frameworks present
better performance than centralized frameworks in terms of
content delivery latency and traffic cost. Moreover, the
decentralized frameworks perform better in a massively
vibrant, diversified, and distributed video streaming
environment or in dynamic and heterogeneous large-scale
networks where devices are resource-constrained, including in
complex 10T environments. Furthermore, it is shown that FL
edge caching presents viable mechanisms in 5G and B5G
networks. However, traditional FL algorithms incur high
communication overhead. Therefore, as part of our future
work, we will explore the techniques to improve the
communication efficiency of FL algorithms. In particular, we
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will study the mechanisms of transfer learning and
personalized FL.
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