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Abstract—Recently, many machine learning-based hy-
brid beamforming algorithms have been studied to imple-
ment the practical mmWave dense MIMO systems with
high spectral efficiency. Hybrid beamforming algorithm
based on deep reinforcement learning (DRL), is claimed to
be the state-of-the-art technique regarding the computation
time to achieve high spectral efficiency. Nonetheless, DRL is
known to suffer from overestimation, which reinforces the
algorithm to converge to a suboptimal behavior. Herein,
we investigate overestimation in DRL-based hybrid beam-
forming using the angle representation of analog precoder.
We discuss possible directions, based on the behavioral
interpretation, to handle the overestimation.

I. INTRODUCTION

Hybrid beamforming (HBF) enables the practical im-
plementation of mmWave dense MIMO systems with
high spectral efficiency [1]. Its effectiveness comes from
the separation of the analog/digital domain, reducing
the number of costly components such as converters
between the analog/digital domain. Among a myriad
of work applying the modern machine learning tools
to HBF, in this paper, we focus on algorithms based
on deep reinforcement learning (DRL). The benefit of
DRL-based HBF is the short online computation time
and robustness to channel estimation error [2f.

Overestimation in DRL is a well-known issue, that
can make the algorithm converge to a suboptimal be-
havior. Moreover, overestimation is inherent and exists
whenever the function estimator is imprecise [3]]. Double
Q-learning [4] is known as a ubiquitous solution for
DRL with discrete states, but it is not suitable for DRL
with continuous states which correspond to dense MIMO
systems. Meanwhile, clipped double Q-learning [S]] can
handle DRL with continuous states.

To the best of the authors’ knowledge, overestimation
in DRL-based HBF has not been studied. Herein, we
observe the overestimation behaviors of inherent states
and discuss possible remedies.

The contribution of this paper are the following:
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(b) Algorithm flow of DRL for HBF
Fig. 1: DRL-based HBF concepts: (a) Hardware, (b) Algorithm

o We properly observe and interpret the overestima-
tion behavior of the inherent state in DRL-based
HBF algorithms.

o We discuss remedies to the overestimation, pro-
viding experimental results on toy examples. We
sketch to provide intuition towards an extension to
practical problems.

II. OVERESTIMATION PROBLEM IN DRL-BASED HBF

We implement an exemplary DRL-based HBF, sim-
ilar to [2|], with only one learning parameter Fg%
We consider a 128 by 16 MIMO system with 2 ra-
dio frequency chain and data stream in Figure [Ta]
We apply the learning model in Figure [Tb] with
state s; = {FBBngEI),WRwaBB}’ action a; =
{FBB,FS)F,WRF,WBB}, and reward r; that corre-
sponds to s;y; and channel H. We consider a narrow-
band channel model with IN,, = 2 path clusters with

angle of arrival vector (0, {5) and angle of departure vec-
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Fig. 2: Statistical interpretation of angle parameter Orr of RF
precoder (per subsequence for selected SNR of 5dB and 7 = 0.5 - 1073)

tor (0, 13a-75)- We represent Fg% with angle parameters
Orr,1 and Orr o following the beam steering fashion [6].

Figure |2| depicts the overestimation issue in DRL-
based HBF. The spectral efficiency staggers up to Sub-
sequence 10, reaching almost 17. After Subsequence 15,
we observe an increase in spectral efficiency, linearly
up to Subsequence 30. Again, after Subsequence 40, we
observe negligible oscillation. The means of angle pa-
rameter Orr,; and Orr 2 are both zero at Subsequence 1.
The mean of angle parameter Orp 2 tends to increase up
to Subsequence 30, where it lies near its target. However,
the mean of angle parameter fgr,; does not converge to
its target. It tends to decrease up to Subsequence 30,
where it lies near —1.5 - 10™2 not converging it to its
target of zero. We interpret that the overestimation of
the state Ogp,1 = —1.5- 103 is the main source leading
to suboptimal behavior. To be specific, the baseline
starting with Ogp 1 = O, explores frp,1 around 0. Due
to the imprecision of function estimator, the value of a
negative frr,; becomes higher than that of Ogr; = 0.
The overestimation of value induces a poor policy to
select negative frp 1. The poor policy then results in
a bad estimation of value. Overall, the overestimation
accumulates throughout the recursive update of value [J3]].
We observe the accumulated error as a “drift” in Ogp 1,
causing its tendency of decreasing.

III. CONTROL OF OVERESTIMATION IN DRL

Overestimation in DRL with discrete states can be im-
proved by the use of separate networks, respectively for
selecting and evaluating an action in the max operator of
value updates [4]. Similarly, for continuous states, deep
deterministic policy gradient (DDPG) separately trains
target networks and online networks in an actor-critic
learning fashion [7]]. The target networks are delayed
copies of online networks, where a parameter 7 controls
the delay. For stable learning, DDPG requires a small

7. The small 7, however, slows the change of target
actor network, eventually making the target networks and
online networks similar. Therefore, the practical use of
DDPG needs further solution of overestimation.

On one hand, using the minimum value estimate of two
separate networks is a quick remedy of overestimation
in DDPG, at the cost of additional computation from
the extra networks [5]. On the other hand, multi-step
bootstrapping method [8] in the value estimate with-
out additional networks introduces underestimation that
needs further investigation in DRL-based HBF. Overall,
the behavioral interpretation of DRL-based HBF using
angle representation is interesting to observe the effect
of remedies introduced by [5]], [8].

IV. CONCLUSIVE REMARK

Interpretation in DRL-based HBF is important, in the
sense that it allows us to observe the behavioral details
more than just its explicit performance. We illustrated
the overestimation behavior in DRL-based HBF, with
an exemplary implementation using angles, which is
not explicit based on observed spectral efficiency. As a
specific result, the poor “beam steering angle” behaviors
accumulate overestimation errors, eventually lead to a
suboptimal value of spectral efficiency throughout the
learning process.

The behavioral interpretation, and remedies of the
overestimation, of DRL-based HBF using angle repre-
sentation make more margin of the tradeoff between
computation time and spectral efficiency. Using the
minimum value estimate and multi-step bootstrapping
method can be further combined to control the overesti-
mation.
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