폐 영역 분할에서 적응형 활성화 함수의 유효성 검증

신호경, 김재일

경북대학교

parkland106e@naver.com, threeyears@gmail.com

Validation of adaptive activation function in lung segmentation

Ho Kyung Shin, Jaeil Kim Kyungpook National Univ.

요약

본 논문은 공개 데이터셋으로 학습한 폐 영역 분할 모델에서 적응형 활성화 함수에 따른 성능 비교를 통해 성능 향상의 유효성을 검증하였다. 폐 영역 분할을 위한 베이스라인 모델로 U-Net++[1]를 사용하였고, ReLU, ELU[2], MPELU[3], EPReLU[4], EELU[5] 다섯 가지 활성화 함수의 성능을 비교하였다. 모델 간 성능 비교를 위해 Shenzhen, Covid, Montgomery 3가지 데이터셋을 교차로 학습, 검증을 진행하였다. 성능 비교 결과 MPELU를 적용한 모델들에서 성능이 제일 높았고, MPELU와 같은 적응형 활성화 함수가 고정형 활성화 함수보다 성능이 더 높은 것을 확인하였다. 이를 통해 폐 영역 분할에서 적응형 활성화 함수 사용 시 성능 향상이 유효하다는 것을 확인하였다.

I. 서 론

폐 영역 분할은 흉부 영상에서 신체 외곽 배경과 폐를 제외한 다른 신체 부분을 제거함으로 폐 영역을 찾는 것으로 폐 내 병변 검출 정확도 항상에 영향을 미치며 최근 차원 축소[6], U-Net모델[7] 등 딥러닝을 이용한 폐 영역 분할 기법이 활발히 연구되고 있다. 하지만 데이터에 의존적인 딥러 닝의 특성에 따라 학습데이터 수집 기관마다 딥러닝 모델의 성능차이가 나타날 수 있다. 외부 데이터에 대해 성능이 떨어지는 이유는 그림 1과 같이 같은 흉부 X-Ray 영상임에도 촬영기기, 조작 방법으로 인해 기관마다 다른 영상 특징을 가지기 때문이다. 데이터셋 간 차이로 인한 모델의 성능 저하를 해결하기 위해 이미지 단위의 전처리, 데이터 어그멘테이션(Data augmentation) 기법, 모델 구조개선 등 관련 연구가 활발히 진행되고 있다.

(a) Shenzhen (b) Covid (c) Montgomery 그림1 Shenzhen, Covid, Montgomery 데이터셋 속 흉부 X-Ray 영상 간 차이

본 논문에서는 세가지 공개 데이터셋을 이용하여 폐 영역 모델에서 ReLU, ELU, MPELU, EPReLU, EELU 다섯 가지 활성화 함수의 일반화 성능을 비교하고, 적응형 활성화 함수를 통한 성능 향상의 유효성을 검증하고자 한다.

Ⅱ. 본론

답러닝에서 활성화 함수는 입력으로부터 다음 층으로 전달할 출력를 결정하는 역할을 하고, 출력에 비선형성을 추가해 모델이 비선형적 패턴을 학습할 수 있게 해준다. 모델에 비선형성을 추가해주는 대표적인 활성화함수인 Rectified Linear Unit(ReLU) 함수는 가중치들의 합이 음수일 때활성화되지 않는 Dying ReLU, 음수 값에서 기울기가 소실되는 문제가 있다. 문제를 해결하기 위해 ReLU를 기반으로 한 활성화 함수들이 제안되었고, MPELU, EPReLU, EELU와 같은 적응형 활성화 함수는 학습 파라미터를 통한 활성화 함수의 학습으로 데이터에 맞추어 모델의 성능을 높이고 있다.

적응형 활성화 함수를 통한 폐 영역 분할 모델의 성능 향상의 유효성을 검증하기 위해 고정형 활성화 함수 ReLU, ELU와 적응형 활성화 함수 MPELU, EPReLU, EELU의 성능을 비교하는 실험을 하였다. 베이스라인모델로 U-Net++를 사용해 흉부 X-Ray 영상에서 폐 영역 분할을 진행하였다. U-Net++ 모델은 Encoder와 Decoder 두 서브 네트워크와 두 서브네트워크를 연결하는 Nested dense convolution block으로 구성된다. 활성화 함수에 따른 성능 비교를 위해 두 서브 네트워크 속 Convolutional block과 Nested dense convolution block을 구성하는 활성화 함수들을 바꿔가며 실험을 진행하였다. 실험에는 Shenzhen, Covid, Montgomery 세가지 데이터셋에서 각 572, 226, 148장을 사용했고, 전처리로 영상에 CLAHE(Contrast Limited Adaptive Histogram Equalization) 알고리즘을 적용해 대비를 증가시켰다. 모델 간 성능 비교를 위해 Dice coefficient (수식 1)를 사용하였다.

$$DSC = \frac{2|X \cap Y|}{|X| + |Y|} \tag{1}$$

그림 2는 활성화 함수에 따른 모델 성능 비교를 위한 실험 프로세스이다. 실험은 데이터셋을 학습, 튜닝, 테스트 데이터로 나누어 학습 데이터와 튜 닝 데이터으로 모델을 학습시킨 후 테스트 데이터와 나머지 두 데이터셋

의 성능을 확인하였다.

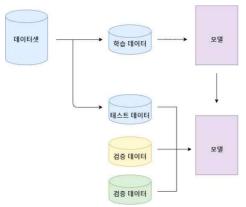


그림2 활성화 함수에 따른 일반화 성능 비교를 위한 실험 프로세스

적응형 활성화 함수들의 학습 파라미터 초기화를 바꿔가며 실험을 진행 하였고, 각 데이터셋으로 학습시키고 테스트한 결과는 그림 3과 같다.

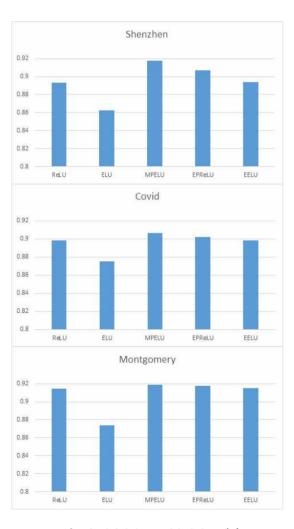


그림3 각 데이터셋으로 학습시킨 모델의 활성화 함수별 성능

실험 결과 MPELU가 각 데이터셋을 학습시킨 모델에서 평균 성능이 0.9173, 0.9067, 0.9190으로 가장 높은 성능을 보였다. 대부분의 테스트에서 적응형 활성화 함수를 사용한 모델들이 고정형 활성화 함수를 사용한

모델보다 성능이 높은 것을 확인하였다.

Ⅲ. 결론

본 논문에서는 폐 영역 분할 모델에서 적응형 활성화 함수를 통한 모델성능 향상의 유효성 검증을 위해 다섯 가지 활성화 함수(ReLU, MPELU, EPReLU, EELU, ELU)를 비교하였다. 활성화 함수 간 성능 비교를 위해모델에서 활성화 함수를 바꿔가며 Shenzhen, Covid, Montgomery 데이터셋을 교차로 학습, 테스트하였다. 그 결과 Montgomery 데이터셋으로학습하고 테스트한 경우를 제외하면 나머지 모두에서 MPELU가 가장 높은 성능을 보였고, 적응형 활성화 함수가 고정형 활성화 함수보다 성능이높은 것을 확인하였다. 이를 통해 데이터 수가 작은 폐 영역 분할 모델에서 적응형 활성화 함수 사용 시 성능 향상의 유효성을 검증하였다.

ACKNOWLEDGMENT

"This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2020R1I1A3074639)"

참고문헌

- [1] Z.W. Zhou, M.M.R. Siddiquee, N. Tajbakhsh and J.M. Liang, "UNet++: A Nested U-Net Architecture for Medical Image Segmentation," Deep Learning in Medical Image Anylysis and Multimodal Learning for Clinical Decision Support, pp. 3–11, 2018
- [2] D.-A. Clevert, T. Unterthiner, S. Hochreiter, "Fast and accurate deep network learning by exponential linear units (elus)", arXiv preprint arXiv:1511.07289 (2015)
- [3] Y. Li, C. Fan, Y. Li, Q. Wu, Y. Ming "Improving deep neural network with multiple parametric exponential linear units", Neurocomputing, 301 (2018), pp. 11–24.
- [4] X. Jiang, Y. Pang, X. Li, J. Pan, Y. Xie "Deep neural networks with elastic rectified linear units for object recognition" Neurocomputing, 275 (2018), pp. 1132–1139
- [5] D. Kim, J. Kim and J. Kim, "Elastic exponential linear units for convolutional neural networks", Neurocomputing, vol. 406, pp. 253–266, Sep. 2020
- [6] Gordienko, Y., Kochura, Y., Alienin, O., Rokovyi, O., Stirenko, S., ang, P., Hui, J., Zeng, W. "Dimensionality reduction in deep learning for chest x-ray analysis of lung cancer." 10th International Conference on Advanced Computational Intelligence, Xiamen, China. arXiv preprint arXiv:1801.06495 (2018)