AI(Deep Learning)을 이용한 S18650리튬이온배터리 SOC예측에 관한 연구

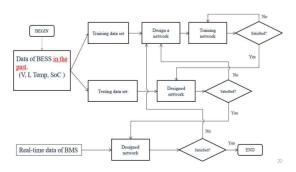
배정효, 진윤선, 백지국*, 박민원**, 딘민차우**,김창순**,다오반권** 한국전기연구원, *(주)아이이에스, **창원대학교 jhbae@keri.re.kr, *kawabai@gmail.com,**capta.paper@gmail.com

A Study on the SoC estimation of 18650 Rechargeable Li-Ion battery by AI(DeepLearning)

JungHyo, Bae YunSeon,Jin, JiKook Baek*, MinWon Park**,MinhChau,Dinh**,
ChangSun,Kim**,Van Quan.Dao**
KERI, *IES Co. LTD., **Changwon Univ.

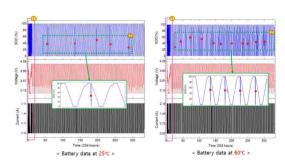
요 약

본 논문은 25℃, 60℃ 실험온℃ 조건에서 S18650 2차전지를 116싸이클 충/방전 후 수집한 데이터로 데이터 셋을 만들어 ANN(Artificial Neural Network) 신경망을 이용해 배터리충전상태 즉, State of Charge (SOC)를 예측하는 알고리즘을 개발하였다. 배터리 충/방전 데이터 셋은 전압, 전류, 온도(℃), SOC 데이터가 포함되어 있다. 이 중에 70% 데이터를 활용해서 AI 신경망 모델 학습용으로 사용하였으며, 30% 데이터는 AI모델 테스트 및 검증으로 사용하였다. AI모델은 입력, 출력, Hidden layers, Activation Functions 등으로 구성하였다. Hidden layers층은 총 2개이며 한 층에 32개 노드를 사용할 때에 예측한 결과가 25℃ 조건에서 SOC 평균 에러율은 0.32%, Max 에러율은 1.6% 이었으며, 60℃ 시에는 SOC 평균 에러율은 0.41%, Max 에러율은 2.2% 가 ℃출 되었다.

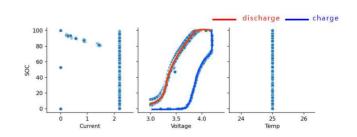

I. 서 론

본 논문에서는 현재까지 여러 배터리 충전상태 예측 방법에 대해 조사를 했다. 그리고 각 방법에 대한 장단점을 분석하였다. 이 중에는 AI 딥러닝으로 배터리 충전상태 예측방법이 실시간, 비선형 및 다양한 유형의 배터리에 높은 적응성 등의 특징을 가지고 있다.[1]

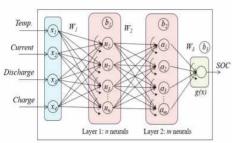
그리고 요즘에 인공지능 및 AI시대가 핫한 이슈로 되는 바람에 세계 각나라에는 많은 연구 및 관심을 갖고 있다. 또한 한국전기연구원에서 AI 인공지능으로 전기자동차 배터리 관리 시스템을 개발하는 과제를 수행하고 있는 내용 중에, 본 논문에서는 AI신경망을 이용해 S18650 리튬이온 2차전지 충전상태 (State of Charge 즉 SoC)를 예측하는 알고리즘을 개발 및 실험하였다.


Ⅱ. 본론

먼저 배터리 SOC예측에 대해 AI 모델 개발 과정은 그림1 과 같다.


<그림 1. SOC예측에 대해 AI 모델 개발 과정>

이 과정에는 먼저 신경망을 설계하고 학습하는 것이다. 그리고 데이터 셋을 신경망 학습용, 테스트용, 실시간 검증용 등 3가지 용도로 사용하였다. 그리고 그림 2는 배터리데이터를 분석한 것이다.



<그림 2 배터리 데이터 분석>

여기서 25℃/60℃ 각각에 대한 전압 전류 SOC값으로 분석하여 도시하였다. 1/2로 표시한 부분은 Trash data이며 정확한 AI모델을 개발하기 위해서 이런 Trash data를 제거하여 사용하였다.

<그림 3. 전압 전류 온도와 SOC 관계 분석 > 그림 3은 SOC와 전압과 강한 관계를 보이며, 지수함수로 표현할 수 있는 것으로 판단이 되며, 전압 값은 충전/방전으로 나눠서 input으로 사용해야한다. ANN 신경망을 이용한 SOC예측 모델은 그림4와 같다[2].

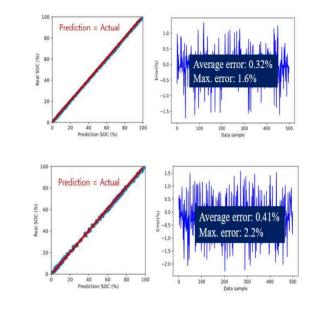
<그림 4 ANN 신경망을 이용한 SOC예측 모델 >

AI 모델의 설계과정은 표1과 같다.

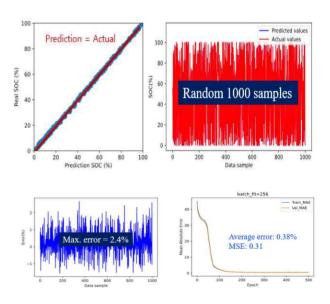
<표 1 AI 모델의 설계과정 >

STEP	설계 내용	비고		
1	데이터분석 및 학습용	-Training (80%) -Validation (10%)		
1	데이터 설정	-Validation (10%) -Testing (10%)		
2		-Input layer: V(t), I(t), T(t)		
	 신경망을 구축 및 학습	-Hidden layer: No. of layers		
	신경경로 구국 첫 역급 	-Output layer: SOC(t)		
3	ANN의 active	-Sigmoid, Linear, Tanh,		
	function 선정	ReLu		
4	ANN의 optimizer	-Adam, AdaDelta, SGD, …		
4	선정			
5	학습과정에 필요한	-Mean squared error (MSE)		
	Loss function및	-Mean absolute error (MAE)		
	metrics선정	-Metrics = (MSE, MAE)		
6	최적 학습률 인자 α 확	$0 < \alpha < 1$		
	정			

설계한 AI모델로 학습한 후에 각각의 비교결과는 다음과 같다.


1. Activation function	No. of neural	Learning rate	Optimizer	Epoch	MAE (%)
Technology (4 - 32 - 32 - 1	0.1	Adam	500	24.2
Sigmoid	4 - 32 - 32 - 1	0.01	Adam	500	3.12
(Hidden layer)	4 – 32 – 32 – 1	0.001	Adam	500	1.34
Tanh	4 - 32 - 32 - 1	0.1	Adam	500	22.1
	4 - 32 - 32 - 1	0.01	Adam	500	1.94
(Hidden layer)	4 - 32 - 32 - 1	0.001	Adam	500	0.32
Active function & Learni	ng rate 비교	**Number	of hidden laye	er 비교	
2. Hidden layer	No. of n	eural	Activation	Epoch	MAE (%)
	4 - 8 -	- 1	Tanh 500 21.33	21.32	
Cinala	4 40 4		Total	500	0.26

2. Hidden layer	No. of neural	Activation	Epoch	MAE (%)
Single hidden layer (Basic ANN)	4-8-1	Tanh	500	21.32
	4 - 16 - 1	Tanh	500	8.36
	4 - 32 - 1	Tanh	500	6.27
	4 - 64 - 1	Tanh	500	6.11
Multiple hidden layers (Deep ANN)	4 - 32 - 32 - 1	Tanh	500	0.32
	4 - 32 - 32 -32 - 1	Tanh	500	0.33
	4 - 32 - 32 - 32 - 32 - 1	Tanh	500	0.31


<그림 5 각각 학습조건에서 SOC예측 에러율 >

Activation function에서 32개의 노드로 설정(고정)한 이유는 노드 수는 8,16,32,64로 실험을 해 본 결과가 32개 노드를 가질 때에 에러 율이 가장 정확하고 정밀하였다. 그리고 Hidden layer에서 No. of neural은 4-32-32-1로 고정한 이유가 Hidden layer 1,3 층 일 때 보다 예측결과가 정밀하며 4층과 (즉 4-32-32-32-32) 비교하면 에어 율이 0.01%높지만 산력 소모량을 고려해 4-32-32-1이 가장 이상적인 설계였다.

그림6에서 25°C Tanh Active function 및 32개 노드를 가진 Hidden Layer 층 2개를 이용할 경우, 평균 에러율은 0.32%가 되었다. 그리고 60°C 평균 에러율은 0.41%가 되었다.

<그림 6 25℃ 및 60℃ 예측 에러율 >
또한 온도 상관없이 random으로 1,000개 데이터로 이용해서 예측할 때나온 예측 에러율은 그림 7과 같다.

<그림 7 1000개 random 데이터로 예축 결과 >

1,000개의 샘플 충방전 데이트로 검증한 결과가 25℃나 60℃ 조건에서 평균 에러율은 0.38% 및 MAX 에러율이 2.4% 나타났다.

Ⅲ. 결론

본 논문에서는 AI 신경망 모델을 설계하고 S18650 배터리 충방전 데이터를 이용해 SOC예측하는 알고리즘을 개발 및 실험하였다. AI 신경망모델설계과정은 6단계로 나눠서 설계했고, 많은 학습 후에 나온 결과를 분석하였으며, 결론적으로, ANN신경망에는 Active function은 Tanh로 선정하고, Hidden Layer은 2개로 정하고, 한 층에 32개 노드를 갖고 있을때에 SoC예측 결과가 평균 에러율은 0.38% 및 MAX 에러율이 2.4% 로써, 매우 정밀하게 예측 되었다.

ACKNOWLEDGMENT

본 연구는 한국전기연구원 및 주식회사 아이이에스 수행 중인 'HKF와 Deep Learning을 이용한 화재예방용 고정밀 Smart-BMS 개발' 과제에게 지원을 받았다.

참고문헌

- [1] Yan Q. and Wang Y., "Predicting for power battery SOC based on neural network," 2017 36th Chinese Control Conference (CCC), 2017,4140–4143
- [2] David J-B, Jesús F-A.,"Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles," Procedia Computer Science 130 2018, 533 - 540